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THE «(3) SCHEME—A FOURTH-ORDER SPACE-TIME FLUX-CONSERVING
AND NEUTRALLY STABLE CESE SOLVER

Sin-Chung Chang
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both
space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the
numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE
development of high order schemes, in this paper we describe the a(3) scheme—a new 4th-order space-time
flux-conserving and neutrally stable CESE solver of the advection equation du/0t 4+ adu/0x = 0. The space-
time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points
at the lower time level. Because it is associated with three independent mesh variables u?, (uz)}, and (uz:)7}
(the numerical analogues of u, du/dx, and 9%u/dx?, respectively) and three equations per mesh point, the
new scheme is referred to as the a(3) scheme. As in the case of other similar CESE neutrally stable solvers,
the a(3) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward
marching, and backward marching forms. These forms are equivalent and satisfy a space-time inversion
invariant property which is shared by the advection equation. (In physics, space-time inversion invariance is
referred to as PT invariance where P denotes a parity, i.e., mirror-image or spatial-reflection, operation while
T denote a time-reversal operation.) Based on the concept of PT invariance, a set of algebraic relations
involving the coefficient matrices of the a(3) scheme is developed. As it turns out, in the von Neumann
analysis, these relations lead to the conclusion that the a(3) scheme must be neutrally stable when it is
stable. Also, in the same analysis, it is proved rigorously that: (i) all three amplification factors (i.e., the
eigenvalues of the 3 x 3 amplification matrix) of the a(3) scheme are of unit magnitude for all phase angles
6 of the Fourier modes considered in the von Neumann analysis if and only if |v| < 1/2 (v = aat/ax); (ii)
the a(3) scheme is stable if and only if |v| < 1/2; and (iii) the a(3) scheme is linearly unstable (in a sense
to be defined) if |v| = 1/2. These theoretical results have been confirmed numerically. Moreover, through
numerical experiments, it is established that the a(3) scheme generally is (i) 4th-order accurate for the mesh

variables u and (u,)7; and (ii) 2nd-order accurate for (us;)7. However, in some exceptional cases, the

J’ J
scheme can achieve perfect accuracy aside from round-off errors. Finally the phase errors of the principal
amplification factor of the a(3) scheme are evaluated numerically and shown to be O(#%), a sharp reduction

from those of the a scheme (the original neutrally stable CESE solver) which are O(6?).
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1. Introduction

The space-time conservation element and solution element (CESE) method is a high-resolution and
genuinely multidimensional method for solving conservation laws [1-73]. Its nontraditional features include:
(i) a unified treatment of space and time; (ii) the introduction of conservation elements (CEs) and solution
elements (SEs) as the vehicles for enforcing space-time flux conservation; (iii) a novel time marching strategy
that has a space-time staggered stencil at its core and, as such, fluxes at an interface can be evaluated
without using any interpolation or extrapolation procedure (which, in turn, leads to the method’s ability
to capture shocks without using Riemann solvers); (iv) the requirement that each scheme be built from a
non-dissipative core scheme and, as a result, the numerical dissipation can be controlled effectively; and (v)
the fact that mesh values of the physical dependent variables and their spatial derivatives are considered as
independent marching variables to be solve for simultaneously. Note that CEs are non-overlapping space-
time subdomains introduced such that (i) the computational domain can be filled by these subdomains; and
(ii) flux conservation can be enforced over each of them and also over the union of any combination of them.
On the other hand, SEs are space-time subdomains introduced such that (i) the boundary of each CE can
be divided into several component parts with each of them belonging to a unique SE; and (ii) within a SE,
any physical flux vector is approximated using simple smooth functions. In general, a CE does not coincide
with a SE.

Without using flux-splitting or other special techniques, since its inception in 1991 [1], the unstructured-
mesh compatible CESE method has been used to obtain numerous accurate 1D, 2D and 3D steady and
unsteady flow solutions with Mach numbers ranging from 0.0028 to 10 [51]. The physical phenomena modeled
include traveling and interacting shocks, acoustic waves, vortex shedding, viscous flows, detonation waves,
cavitation, flows in fluid film bearings, heat conduction with melting and/or freezing, electrodynamics, MHD
vortex, hydraulic jump, crystal growth, and chromatographic problems [3-73]. In particular, its unexpected
simple non-reflecting boundary conditions [9,68] and rather unique capability to resolve both strong shocks
and small disturbances (e.g., acoustic waves) simultaneously [13,15,16] makes the CESE method an effective
tool for attacking computational aeroacoustics (CAA) problems. Note that the fact that the second-order
CESE schemes can solve CAA problems accurately is an exception to the commonly-held belief that a
second-order scheme is not adequate for solving CAA problems. Also note that, while numerical dissipation
is needed for shock capturing, it may also result in annihilation of small disturbances. Thus a solver that can
handle both strong shocks and small disturbances simultaneously must be able to overcome this difficulty.

In spite of its nontraditional features and potent capabilities, the core ideas of the CESE method are
simple. In fact, all of its key features are the inescapable results of an honest pursuit driven by these
simple ideas. The first and foremost is the belief that the method must be solid in physics. As such, in
the CESE development, conservation laws are enforced locally and globally in their natural space-time unity
forms for 1D, 2D and 3D cases. Moreover, because direct physical interaction generally occurs only among
the immediate neighbors, use of the simplest stencil also becomes a CESE requirement. Obviously, this
requirement is also very helpful in simplifying boundary-condition implementation.

The second idea emerges from the realization that stability and accuracy are two competing issues in
time-accurate computations, i.e., too much numerical dissipation will degrade accuracy while too little of it
will cause instability. In other words, to meet both accuracy and stability requirements, computation must be
performed away from the edge (“cliff”) of instability but not too far from it. This represents a real dilemma
in numerical method development. As an example, schemes with high-order accuracy generally have high
accuracy and low numerical dissipation. However, they are susceptible to instability. In fact, in dealing with
complicated real-world problems, stability of these schemes often is difficult to maintain without resorting to
ad hoc treatments. To confront this issue head-on, in CESE development, generally it is required that a solver
be built from a non-dissipative (i.e., neutrally stable) core scheme. By definition, computations involving
a neutrally stable scheme are performed right on the edge of instability and therefore the numerical results
generated are non-dissipative. As such numerical dissipation can be controlled effectively if the deviation of
a solver from its non-dissipative core scheme can be adjusted using some built-in parameters. Note that the
above idea also plays an essential role in the recent successful development of a family of Courant number
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insensitive schemes [59,61,64,65,67].

Other CESE ideas are: (i) the flux at an interface be evaluated in a simple and consistent manner;
(ii) genuinely multidimensional schemes be built as simple, consistent and straightforward extensions of
1D schemes; (iii) triangular and tetrahedral meshes be used in 2D and 3D cases, respectively, so that the
method is compatible to the simplest unstructured meshes and thus can be used to solve problems with
complex geometries; and (iv) logical structures and approximation techniques used be as simple as possible,
and special techniques that has only limited applicability and may cause undesirable side effects be avoided.
Fortunately for the CESE development, as it turns out, the realization of the above lesser ideas (i)—(iv)
follows effortlessly from that of the first two core ideas.

The first model equation considered in the CESE development is the simple advection equation

ou ou
— — =0 1.1

ot + “or (1.1)
where the advection speed a # 0 is a constant. Let x; = x, and z2 = t be considered as the coordinates

of a two-dimensional Euclidean space E2. Then, because Eq. (1.1) can be expressed as V - h = 0 with

B (au,u), Gauss’ divergence theorem in the space-time Fs implies that Eq. (1.1) is the differential form

of the integral conservation law
¢ Eas—o (1:2)
S(V)

As depicted in Fig. 1, here (i) S(V) is the boundary of an arbitrary space-time region V in Fs, and (ii)
ds = do 71 with do and 77, respectively, being the area and the unit outward normal vector of a surface element
on S(V). Note that: (i) because h - d is the space-time flux of h 1eav1ng the region V' through the surface
element d3, Eq. (1.2) simply states that the total space-time flux of h leaving V' through S(V') vanishes;
(ii) in Es, do is the length of a line segment on the simple closed curve S(V); and (iii) all mathematical
operations can be carried out as though Es were an ordinary two-dimensional Euclidean space.

It is well known that a solution to Eq. (1.1) represents non-dissipative data propagation along its
characteristic lines defined by dx/dt = a. Moreover, Eq. (1.1) is invariant under space-time inversion, i.e., it
transforms back to itself if 2 and ¢ are replaced by —x and —t, respectively. (In physics, space-time inversion
invariance generally is referred to as PT invariance where P denotes a parity, i.e., mirror-image or spatial-
reflection, operation while T' denotes a time-reversal operation.) Thus a solution to Eq. (1.1) possesses the
following properties: (i) it is completely determined by the data specified at an initial time level; (ii) its
value at a space-time point has a finite domain of dependence (a point) at the initial time level; and (iii) the
space-time inversion image of a solution to Eq. (1.1) is also a solution and vice versa. As such, in the initial
CESE development, the focus is on the construction of an ideal core solver of Eq. (1.1) that enforces the
conservation law Eq. (1.2) and also possesses properties similar to those of Eq. (1.1), i.e., it is a two-level,
explicit, non-dissipative, and PT invariant solver. An in-depth account of this development and the resulting
“a” scheme is given in [71]. As it turns out, the 2nd-order accurate a scheme (i) has a space-time stencil
formed by one mesh point at the upper time level and two mesh points at the lower time level; and (ii) it
is neutrally stable if v? < 1 where v = aat/az. Also, at each space-time mesh point (j,n), the a scheme
is associated with two independent mesh variables u? and (u;)? (the numerical analogues of u and du/dx,
respectively) and two equations.

Until recently, with one exception (a three-level and 3rd-order accurate scheme reported on p. 80 of [1]),
all CESE solvers of Eq. (1.1) are two-level and 2nd-order accurate extensions of the a scheme. To initiate
a systematic CESE development of high-order schemes, in this paper we describe a new 4th-order accurate,
space-time flux conserving, and neutrally stable CESE solver of Eq. (1.1). As will be shown, the space-time
stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at
the lower time level. Because it is associated with three independent mesh variables u}, (u;)} and (uz:)}
(the numerical analogues of u, du/dx, and 0?u/dx?, respectively) and three equations at each mesh point,
hereafter the new scheme is referred to as the a(3) scheme.
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The rest of the paper is organized as follows: In sec. 2, it is explained how the concepts of flux conserva-
tion and PT invariance along with a requirement to minimize the truncation error of its principal component
equation uniquely define the a(3) scheme. Also, for the a(3) scheme, we present (i) several of its equivalent
forms; (ii) the truncation errors of its three component equations; and (iii) a set of PT-invariance induced
algebraic relations involving the coefficient matrices of its component equations.

A von Neumann analysis for the a(3) scheme is presented in Sec. 3. Specifically, we provide rather
rigorous and thorough discussions on the properties of the 3 x 3 amplification matrix and its eigenvalues
(i.e., the amplification factors). In particular, it is proved that: (i) the a(3) scheme must be neutrally stable
if it is stable; (ii) all three amplification factors are of unit magnitude for all phase angles 6 of the Fourier
modes considered in the von Neumann analysis if and only if |v| < 1/2 (v = aat/ax); (iii) the a(3) scheme
is stable if and only if |v| < 1/2; and (iv) the a(3) scheme is linearly unstable (in a sense to be defined) if
lv| =1/2.

In addition to numerically verifying the theoretical predictions made in Sec. 3, in Sec. 4 it is shown that
the a(3) scheme generally is (i) 4th-order accurate for the mesh variables u? and (u,)?; and (ii) 2nd-order
accurate for (ug.)7. However, as predicted from theoretical considerations, in some exceptional cases the
scheme can achieve perfect accuracy aside from round-off errors. Moreover, it is shown that the phase errors
of the principal amplification factor of the a(3) scheme are O(6%) if || < 1/2, a sharp reduction from those
of the dual a scheme [71] which are O(0?) if |v| < 1.

Conclusions and discussions are given in Sec. 5. Finally, several theorems and trigonometric identities
used in Secs. 2 and 3 are proved in Appendices A and B while the three Fortran codes from which the
numerical results presented in Sec. 4 are generated are listed in Appendices C, D, and E.
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2. The a(3) scheme

To proceed, consider the set €2 of space-time mesh points (j,n) (marked by dots and crosses in Fig. 2(a))
where
QY (G, n)j,n=0,+1,+2 +3,..} (2.1)
We have
Q=0,UQ (2.2)

where 2; and Q) are two disjoint sets defined by
o {(G,n)|j,n=0,£1,4£2,4+3,..., and (j + n) is an odd integer} (2.3)

0, {(G,m)|j,n=0,%£1,4£2,43,..., and (j + n) is an even integer} (2.4)

In Fig. 2(a), the mesh points € Q; are marked by dots while those € Qs are marked by crosses. Hereafter
Qs is referred to as the complement set of €27 and vice versa. Obviously each of €27 and 5 represents a set
of space-time staggered mesh points.

Each (j,n) € Q is associated with (i) a solution element (SE), denoted by SE(j,n) (see Fig. 2(b) where
(4,m) € £ is assumed), and (ii) two conservation elements (CEs), denoted by CE_(j,n) and CEL (j,n) (see
Figs. 2(c) and 2(d) where (j,n) € €y is assumed), respectively. Each SE is the interior of a space-time
region that includes a horizontal line segment, a vertical line segment, and their immediate neighborhood.
On the other hand, each CE is a rectangular space-time region. Hereafter, (i) SEs or CEs associated with
mesh points € ; (€ Q2) may be referred to simply as SEs or CEs associated with € (£22).

As a preliminary for the following development, note that (see Figs. 2(a)—(d)):

(a) Two CEs which are associated with two mesh points, one € Q; while another € Q9 may occupy the
same space-time region. As an example, (i) CE_(j,n) and CE,(j — 1,n) occupy the same space-time
region; and (i) (j,n) € Q1 < (j — 1,n) € Qq. Hereafter the symbol“<” is used as a shorthand for the
statement “if and only if”.

(b) A pair of diagonally opposite vertices of a CE both belong to the same set ; or Q2 while another pair
both belong to the complement set. As an example, points A and C belong to €2; while points B and
D belong to 2s.

(c) The CEs associated with each of 21 and €25 by themselves are nonoverlapping and can fill the space-time
Es.

(d) Among the line segments forming the boundary of the same space-time region occupied by both
CE_(j,n) and CE4(j — 1,n), (i) AB and AD C SE(j,n); (ii)) CB and CD C SE(j — 1,n — 1); (iii) BA
and BC' C SE(j — 1,n); and (iv) DA and DC C SE(j,n — 1). Because AB and BA represent the same
line segment, one can see that any line segment on this boundary is a subset of two SEs with one of
them being associated with €2 and another associated with Qs. Hereafter, this ambiguity is removed
by the following SE designation rule: any line segment designated as a boundary of a CE associated
with Q (Q2) is designated as a subset of a SE associated with Q1 (Q2). As an example, if AB, AD,
OB, and CD are designated as boundaries of CE_(4,n), then because points A and C belong to €,
the above rule implies that: (i) both AB and AD are designated as subsets of SE(j,n); and (ii) both
OB and CD are designated as subsets of SE(j — 1,7 —1). On the other hand, if BA, BC, DA, and DC
are designated as boundaries of CE, (j — 1,7n), then: (i) both BA and BC are designated as subsets of
SE(j — 1,n); and (ii) both DA and DC are designated as subsets of SE(j,n — 1).

Let (z,t) € SE(j,n). Then Eqs. (1.1) and (1.2) will be simulated numerically assuming that u(z,t) and
h(x,t), respectively, are approximated by

(o t.m) S g () )+ ) 1) 5 () 23t () (= ) 4 5 () (=87
(2.5)
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and .
¥ (.t 5,n) € (au* (2, t;4,n), w*(z,t;5,n)) (2.6)

Note that: (i) uf, (us)}, (we)}, (vzz)}, (uzt)}, and (ug)? arve constants in SE(j,n), and the numerical
analogues of the values of u, du/dz, du/dt, 0*u/0x?, 0*u/0xdt, and 9?u/dt? at the mesh point (j,n),
respectively; (ii) (z;,t™) are the coordinates of the mesh point (j,n) where z; = jaz and t" = nat; (iii)
u*(x,t;j,n) represents a 2nd-order Taylor’s approximation of u; and (iv) Eq. (2.6) is the numerical analogy
of the definition & = (au, u).

For any (j,n) € Q, let u = u*(x,t;4,n) satisfy Eq. (1.1) for all (z,¢) € SE(j,n). Then one has

(’U,t)? = —a(um)?, (umt);l = —a(um)?, and  (uw)j = a2(um)?, (j,n) € Q (2.7)

Substituting Eq. (2.7) into Eq. (2.5), one has

u(x,t;4,n) = ul + (ug)} [(x —xj)—a(t— t")] + %(um)? [(:v —z;)—a(t— t")}z, (j,n) e (2.8)

ie., u?, (uz)}, and (ug.)} are the only independent mesh variables associated with (j,n).
With the above preliminaries, next we derive the flux conservation relations that underline the a(3)
scheme.

2.1. Flux conservation relations

Let the flux of * conserve over all CEs, i.e.,
7( h*-ds =0, (j,n) € Q (2.9)
S(CE-(j,n))

and
f{ B - ds =0, (j,n) € Q (2.10)
S(CE+(jn))

Because (i) with respect to CE_(j,n), the outward unit normal vectors 7 at AB, AD, CD, and CB are
(0,1), (1,0), (0, —1), and (—1,0), respectively; and (ii) with respect to CE, (4,n), the vectors @i at AF, AD,
ED, and EF are (0,1), (—1,0), (0,—1), and (1,0), respectively, by using (i) the definitions given following
Eq. (1.2), (ii) the above SE designation rule, and (iii) Eqgs. (2.6) and (2.8), it can be shown that Eqs. (2.9)
and (2.10) are equivalent to

2(1 — 2 " 2(1 — 2 nt
) [u= =+ ] — ) w0 + 205 | e
J Jj—1
(2.11)
and
2(1 2 " 2(1 2 nt
(1-v) {u + (1 +v)uz + %um} =(1-v) {u —(14+v)uz + #um} , (J,m) €
J j+1
(2.12)
respectively. Here: (i) v def aat/Ax is the Courant number; (ii)
n def AT n ., def (AT)? n
(uz)] = 7(um)J and (um)J = T(um)J (2.13)

and (iii) to simplify notation, in the above and hereafter we adopt a convention that can be explained using
an expression on the left side of Eq. (2.12) as an example, i.e.,

2(1 + v+ v? "
et (U4 g+ 2TV () ()

. 2(1+v+1?)
N
3 J

J 3

NASA/TM—2008-215138 6



At this juncture, note that:
(a) Because
ou Az du Ou  (ax)? 0u

_ def X
if =

2o ™ amET 1 o )2

the normalized parameters (uz)} and (uzz)}, respectively, can be interpreted as the numerical analogues
of the values at (j,n) of the first and second derivatives of u with respect to the normalized coordinate
z.

(b) By definition, points B and D depicted in Fig. 2(c) do not belong to either SE(j,n) or SE(j —1,n—1).
This fact, however, does not pose a problem for flux evaluation over S(CFE_(j,n)) because the values
of h* at isolated points do not contribute to the flux of h* over a finite line segment. Similarly, the fact
that points D and F depicted in Fig. 2(d) do not belong to SE(j,n) and SE(j + 1,n — 1) does not pose
a problem for flux evaluation over S(CFE (j, n)).

(c) According to the SE designation rule, each line segment such as AB depicted in Fig. 2(c) can be
assigned with two different fluxes of ﬁ*, one is associated with €, (hereafter referred to as the ©;-flux)
and another associated with Qg (hereafter referred to as the Qs-flux). As such, among those local
conservation relations Eqgs. (2.9) and (2.10), those associated with (j,n) € Q are completely decoupled
from those associated with (j,n) € Q2. Because Egs. (2.9) and (2.10) are equivalent to Eqgs. (2.11) and
(2.12), respectively, it follows that each of the two systems of equations defined by Eqs. (2.11) and (2.12)
is formed by two decoupled subsystems, one is associated with €2; while another associated with 2.

(d) Moreover, because (i) the vector h* at any interface separating two neighboring CEs associated with the
same set 1 (£22) is evaluated using the information from the same SE, and (ii) the unit outward normal
vector on the surface element pointing outward from one of these two neighboring CEs is exactly the
negative of that pointing outward from another CE, one concludes that the flux leaving one of these CEs
through the interface is the negative of that leaving another CE through the same interface. Due to this
interface flux cancelation and the fact that the CEs associated with each of €2; and Qs by themselves
are nonoverlapping and can fill the space-time Es, the local conservation relations Egs. (2.9) and (2.10)
associated with (j,n) € Q1 ((4,n) € Q2) lead to a global conservation relation, i.e., the total £21- (Q2-)
flux of h* leaving the boundary of any space-time region that is the union of any combination of CEs
associated with the same set 1 (Q2) vanishes.

Let 1 =12 #0,ie. 1+v#0and 1 —v #0. Then Egs. (2.11) and (2.12) reduce to

[u —(1=-vuz + ————uzz| = [u +(1-v)ug + —————uzz

—v V2 n — V2 n—1
201 3+ ) L 20 3+ ) L_, Gin)eQ  (2.14)

and

2(1 4+ v+ v?) nt

u} L Gmen  (215)
j+1

[u—i—(l—i—l/)um-l-w I

3 Uzz| = [u — (14 v)uz +

respectively. Obviously, each of the two systems of equations defined by Egs. (2.14) and (2.15) is also formed
by two decoupled subsystems. Moreover, each component equation in Eq. (2.14) represents a stronger
condition than the corresponding equation in Eq. (2.11) in the sense that the former implies the latter
for any given v while the latter implies the former only if an extra condition (i.e., v # —1 for this case)
is imposed. Similarly, each component equation in Eq. (2.15) represents a stronger condition than the
corresponding equation in Eq. (2.12). These stronger conditions will be used in the construction of the a(3)
scheme.

As a preliminary to a later development, next we will take a side tour and introduce the concept of
invariance under space-time inversion.

2.2. Invariance under space-time inversion
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Let u = u(z,t) be a solution to Eq. (1.1) in the domain —co < x,t < 400, i.e.,

ou(z,t) n a(’“)u(x, t)

- =, —00 < &t < +00 (2.16)
Let
o oand ¢ (2.17)
and
iz, 1) def w(—z, —t) (2.18)
Then (i) Eq. (2.16) <
ou(z’,t") Ou(a',t') _ 1y
ot o T 0, —00 <7, t < +00 (2.19)
and (ii)
0 0 0 0
_- - _ d —=_-— 2.2
o~ ot M v T o (2:20)
Thus Eq. (2.16) <
ou(z,t) N ou(x,t) _o, o0 < 7,1 < 400 (2.21)

ot T or
In other words, if u = u(z,t) is a solution to Eq. (1.1), so must be u = @(z,t) and vice versa. Because the
one-to-one mapping

(x,t) < (—z,—1t), —00 < x,t < 400 (2.22)

represents a space-time inversion (PT') operation, hereafter (i) a pair of functions such as u and @ will be
referred to as the PT images of each other; and (ii) a partial differential equation (PDE) such as Eq. (1.1)
is said to be PT invariant if the PT image of a solution is also a solution and vice versa.

Next let

]C,Z dﬁf (9 u(fl’,t) ~ ]C,Z dﬁf (9 u(fl’,t) . o
’LL( )(I',t) = W and ’LL( )(I',t) = W, —OO<$C7t<+OO, k,£—071,2,...
(2.23)
Then, with the aid of the chain rule, Egs. (2.17), (2.18), and (2.23) imply that
ke, (.. _ K+l (o0 41
a0 (3, 1) = 0"t u(—z, —t) _ (_1)k+58 u(z',t)
Oxkott oz’ ot —oo<x,t<+o00; k,£=0,1,2,... (2.24)
_ (_1)k+éu(k,€)(x/7t/) _ (_1)k+éu(k,€)(_$, —t)
ie.,
B0 (g, — if (k4 ¢) i
Ak (o gy — LU (—z,—t) if (k+¢) is even 99
@ (@) { B0 (—z, —t) if (k + ) is odd (2.25)

According to Eq. (2.23), u(%? = 4 and 4% = 4. Thus Eq. (2.18) is a special case of Eq. (2.24) with
kE=(=0.

In the following, the concept of PT invariance will be introduced for the a(3) scheme. As a preliminary,
note that: (i)

(4;n) = (=4, —n) (2.26)

is the numerical analogue of the PT" mapping Eq. (2.22); and (ii) u?, (uz)}, (ue)}, (uax)?, (uzt)}, and (ug)?
are the numerical analogues of the values of u, du/0x, Ou/dt, 0*u/0x?, 9*u/0x0t, and 0%*u/0t?, at the mesh

point (j,n), respectively. Thus, motivated by Eq. (2.25), the one-to-one mapping

uf cuTl ()] o —(u) s (w)f e —(u) ") (on) €9 (2.27)
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is taken as the numerical analogue of the one-to-one mapping
w0 (2, 1) o a*0 (2, 1), —00 < x,t < +oo; k,0=0,1,2,3 (2.28)

For the independent mesh variables, by using Eq. (2.13), Eq. (2.27) reduces to

—n

u;l U_;
wr | [~ ), () €0 (2.20)
Eq. (2.29) can be expressed as
q(j,n) < Uq(—j,—n), (j,m) € Q (2.30)
where
um
— .\ def L .
qdG,n) = | (wa)j |, (j,m) € Q (2.31)
(uzz)}
and
et 1 0 O
U=Z[(0 -1 0 (2.32)
0 0 1

The matrix U is unitary. In fact it is a real matrix with
U=U"! (2.33)

Hereafter (i) M ~! denotes the inverse of any nonsingular square matrix M; (ii) for each (j,n), Ug(—3j, —n)
is referred to as the PT image of ¢(j,n); and (iii) the set formed by Ug(—3j, —n), (j,n) € Q is also referred to
as the image of the set formed by ¢(j, n), (j,n) € Q. According to Eq. (2.33), ¢(j,n) = UUG(—(—3), —(—n)).
Thus ¢(j,n) is the PT image of Ug(—j, —n) as an individual (j,n) or as the set defined over . In the
following, we will show that by itself each of the four subsystems of equations associated with Egs. (2.14)
and (2.15) is PT invariant, i.e., the subsystem maps onto an equivalent subsystem under the mapping
Eq. (2.29).

As an example, consider the subsystem of equations formed by the component equations associated with
Oy in Eq. (2.14). Let it be denoted as Eq. (2.14a). Under the mapping Eq. (2.29), Eq. (2.14a) maps onto

21— v+ 12 " 21 —v+12) 177V
u+ (1 —v)uz + wum =|u—(1-v)uz+ &uﬁ , (4,n) e (2.34)
3 —j 3 —(-1)

At this juncture, note that, in addition to changing the sign of each uz, mapping Eq. (2.29) requires that the
upper and lower indices j, n, j—1, and n—1 in Eq. (2.14a) be replaced by their negatives, respectively. This
is different from simply replacing the symbols j and n everywhere with —j and —n, respectively. Moreover,
to simplify argument, hereafter system B is referred to as the PT image of system A if A maps onto B under
the mapping Eq. (2.29), e.g., the subsystem Eq. (2.34) is the PT image of Eq. (2.14a). Let

- and ¥ 1-n,  (Gin)em (2.35)
Then, by using the fact that (j* + n*) 4+ (j + n) = 2 and therefore (j*,n*) € Q1 < (j,n) € Q4, Eq. (2.34)
can be cast into the form

2(1 —v+1v?)

2(1 — 2 B
wum} - {u b1 =g+ VTV LGt e (2.36)
j*

3

u—(1—v)uz +
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By comparing Egs. (2.14a) and (2.36), one can see that the subsystem Eq. (2.14a) is identical to its PT
image Eq. (2.34) (which is identical to Eq. (2.36)). Thus, under the mapping Eq. (2.29), Eq. (2.14a) maps
onto itself, i.e., the subsystem Eq. (2.14a) is PT' invariant. QED.

The PT invariance of another three subsystems associated with Eqgs. (2.14) and (2.15) can be established
in a similar manner. As such the system formed by all component equations in each of Egs. (2.14) and (2.15)
is PT invariant.

The three mesh variables at any (j,n) € Q are linked to those at (j —1,n —1) and (j + 1,n — 1) by
two component equations in Eqs. (2.14) and (2.15), respectively. In order that the three mesh variables at
(4,m) can be determined in terms of those mesh variables at the (n — 1)th time level, in the next subsection
we introduce an extra PT invariant condition that links the mesh variables at (j,n) with those at the mesh
point (j,n —1).

2.3. A family of PT invariant solvers

Consider the following system of equations:

[u+ aquz + 61@1]? = [u— auz + Buﬁ]?fl , (4,m) € (2.37)
where « and 8 are parameters independent of (j,n). By definition, (j,n) € Q1 (22) & (j,n—1) € Qa3 (21).
Thus, unlike Egs. (2.14) and (2.15), the mesh variables associated with Q; are linked to those associated with
Oy through Eq. (2.37). However, as will be shown, like a subsystem associated with Eq. (2.14) or Eq. (2.15),
the system of equations Eq. (2.37) is PT invariant for any pair of o and g.

The PT image of the system Eq. (2.37) is

[u — aug + Buss) ) = [u+ aug + Puzs) ", (jn) €Q (2.38)

Let
FEY 5 and W ¥1-n, (in)eQ (2.39)

Then because (j',n') € Q < (j,n) € Q, Eq. (2.38) can be cast into the form

[u+ quz + ﬁuﬁ]?,, = [u—auz + 6uﬁ];},’71 , (4,n") e Q (2.40)
By comparing Eqgs. (2.37) and (2.40), one can see that the system Eq. (2.37) is identical to its PT image
Eq. (2.38) (which is identical to Eq. (2.40)). Thus, under the mapping Eq. (2.29), Eq. (2.37) maps onto
itself, i.e., the system Eq. (2.37) is PT invariant. QED.

Because each of Eqgs. (2.14) and (2.15) is PT invariant. one can see that, for any pair of « and 3, the
system formed by Egs. (2.14), (2.15), and (2.37) is PT invariant.

Next, the three mesh variables at any (7, n) € 2 will be solved in terms of those at (j—1,n—1), (j,n—1)
and (j +1,n — 1) using Egs. (2.14), (2.15), and (2.37). Let

def 4

A= 5(1 +av)—20 (2.41)

and assume A # 0. Then it can be shown that Eqs. (2.14), (2.15), and (2.37) <

ul = % [u— auz + ﬁum]?i1
+ % [(2%” —B) 1)~ 2?0‘} [ @+ v)us + wum]: Gin)eQ  (2.42)
+ % KMTV - ﬁ)(l +v)+ 2?04} [u+ (1 = v)ug + 20 - g+ v) m}::ll
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n __ 4v n—1
(uz)j = 5= [u—augz + ﬁum]j

7 3a
172(1— v +v2) 20+v+v?) gt ,
N {T - ﬁ} {u — (1 +v)ug + Tuﬁ}j—rl (Jn) € Q (2.43)
112(1+v+v?) 2(1 — v+ 1?) n—1
a0 S el R G LT e st A
and
n 2 n—1
(uzz)] = N [U — aug + 5UﬁL
l-v+a 20 +v+0v?)  qn-l ,
14+v— 2(1— 2 n-l
L1t a{u—i—(l—u)uf-f—%“ﬁ}
3 j—1

For any pair of @ and 8 with A # 0, Egs. (2.42)—(2.44) represent a solver for Eq. (1.1). In the next
subsection, we pick out the pair of @ and § with which the solver will have the smallest truncation error
(i.e., the highest order of truncation error) for Eq. (2.42).

2.4. A study of truncation error

Because, at each (j,n), Egs. (2.42)—(2.44) represent a system of three equations for three independent
mesh variables, Egs. (2.42)—(2.44) represent a numerical analogue of a system of three coupled partial differ-
ential equations (PDEs) with three dependent variables. (Eq. (1.1) is one of these PDEs). As such, in the
following study, three different symbols @, v, and @ will be used to denote the analytical versions of 7, and
the non-normalized variables (u;)} and (uz:)}, respectively. Specifically, let u(z,t), 9(z,t), and w(z,t) be
functions having all the derivatives needed. Thus one can define

def ~ ou(z,t) . def - a2ﬂ(x,t)
o(x,t) = 0(x,t) — 5 and w(x,t) = w(z,t) — 5 (2.45)
Also, as an example, one can define
Ot \" aer 0™
<8:1:58tm>j = Soigm (jaz, nat) Lm=20,1,2,... (2.46)

Next we will consider the “analytical” version of Eq. (2.42) which results from replacing (i) u7, (u.)},

and (uzz)j, respectively, with 4, 07, and w7, for each (j,m); and (ii) the index n with n + 1 everywhere.
By using Eq. (2.13) and the fact that (j,n +1) € Q < (j,n) € Q, the analytical form can be expressed as

(er)? 4t i{awl 2 - 2o+ B(M)Qwr

J At |7 3A 2 4 j
-2 - ) - 5 fa- L Srren,y) (.47)
_ ﬂ(z%y ) (1+v) + %O‘} i+ a *;)Azm c VZVQ)AIQwK_l} —0
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By applying Taylor’s formula, it can be shown that

n def [ (0T ot 4(a — v) 0l Ax 02 2 0%uN at 1 2a03 5.1 00 (az)?
(er)j = {(815 ) R v v € ) bbd e S e
2u(v — ) @ (ax)? (83 n 3@) (at)? B &@ (ax)3
3a 0z at ot3 0x3/ 6 3a0z2 At
1 12« 3100 (az)® ol +42) — 3pv — 2v° &u (ax)?
+3A[3(1+ ) - ﬁ”]ax At * 9a 0x3 At
o*u ot (at)? 1 203 930 0% (ax)*
(G - 50 S~ g [+ o0 - g5 ek« 255
i 24 6al 3 ox3 At 6a 0x? At (2.48)
12t 5 2av\1 0% (ax)* " 4
tmls -8 ) gy }j + o]

+ i [2;(1 —v+ %)+ 61— V)} [O[(AI)S]/At +0[(az)*] + O[At(AI)BH

+ % [2?0‘(1 +v+02) = B(1+ )| [0[(a2)°) /at + O(a2)*] + O[at(a2)*]]
(J,n) € Q580 #0

Note that (e1)} defined in Eq. (2.47) is normalized by the factor (1/at) so that the lowest-order terms in
the above Taylor’s expansion contain the leading term (0u/dt + adu/Ox) which is independent of At and
Az. Also, in Eq. (2.48) a term is denoted by O[(at)’* (ax)*] if there exists a constant C' > 0 and two fixed
integers /1 > 0 and 3 > 0 such that the absolute value of this term < C(at)*t(az)? for all sufficiently small
At and az. Note that, in determining the order of magnitude of a term such as O [(az)®] in Eq. (2.48),
the parameters o and 3 are not assumed to be constants independent of At and Az. In fact, to reduce the
truncation error of the a(3) scheme, they will be chosen to be functions of v (see Egs. (2.58)) and thus vary
with the ratio at/ax.

In the following, let u = @(x,t), v = v(z,t), and w = W(x,t) be a solution to the system of PDEs formed
by Eq. (1.1) and

ou 0%y
ie.,
on ou . 0u _ 0%
a—i—a%:O, ’U—%:O, and w_(?:v?_o (2.50)

In other words, here the scheme Eqs. (2.42)—(2.44) is considered as a solver of the system of PDEs Egs. (1.1)
and (2.49). Egs. (2.45) and (2.50) imply that

8€+mﬁ aﬁ-ﬁ-mw

oigpm =0 and Wzo 6,m=0,1,2,... (2.51)
oo (o —> <z- D
() () () e
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Note that the first equation in Eq. (2.50), and Eqgs. (2.52)—(2.54) are all special cases of

W W'ﬁ‘(—l) a 8a:k EO, Z,m:0,1,2,...; k=1,2,3... (2.55)

aé+m [5kﬂ o1 k@
With the hint provided by Egs. (2.52)—(2.54), Egs. (2.55) can be proved using the first equation in Eq. (2.50)
and elementary algebra.
By using Egs. (2.46) and (2.51)-(2.54), one can see that (e1)} reduces to

(e1)" = dla—v)duasxr  2w(v—a) @ (ax)? ol +4v?) - 38v — 203 @ (ax)3
A= 3a Oz at 38 Ox2 at 9a ox3  at

n L[% b (142 - V4)(5— QCX_V)}@(AIM }" +O[(at)]

12al 3 3 /10z% at
) (2.56)
+2[20 w4024 50 - 0)] [Ol(ar)?]/at + O[(a2)"] +O[st(s0)]]
P2 0w 07) - 0+ )] [Ol(a2)) /at + O[(a2)'] +Oat(a2)?]]

(J;n) €50 #0

By definition, the expression on the right side of Eq. (2.56) represents the truncation error of Egs. (2.42)
if the scheme Egs. (2.42)—(2.44) are considered as a solver of the system of PDEs Eqgs. (1.1) and (2.49).
Here the values of a and 3 will be chosen so that the truncation error will reach the highest order. From
Eq. (2.56), one can see that the coefficients of the three lowest-order terms in the truncation error vanish if

a—v=0 and a(l+4v%) —36v—20°=0 (2.57)
For the case v # 0, Eq. (2.57) <
14 202
a=v and B= +3 v (2.58)

Next the a(3) scheme will be defined as the special solver with « and 5 being chosen according to Eq. (2.58).
2.5. The basic and forward marching forms of the a(3) scheme
Assuming Eq. (2.58), Egs. (2.37), (2.41)—(2.44) and (2.56) reduce to

1+ 202 " 149212 n-l
[qul/uz—l— +ev um} = {u—yum—k +ev um] (2.59)
J 3 J
A=2/3 (2.60)
1+ 202 ne 1 2(1 2 n—1
= 2w — vug + + Vuﬁ}‘ 1 +V|:U*(1+V>ui+ (I+v+v?) T}
’ 3 ! 2 3 i
5 (5,n) €Q  (2.61)
1—-v 21l —v+v?) n—1
— [u + (1 —v)uz + —uii}
3 j—1
1+ 202 ne 1-2 2(1 2 n—1
(ui)?:2y[u—l/u;ﬁ+ +3V uﬁ]j ! V[U—(l—i-u)ui—i— ( Jrl(;Jrl/) 74 1
Jj+ .
,n) €N
—1+2y[u+(1—y)u—+2(1_U+V2)u }nfl (7,m)
2 * 3 e P
(2.62)
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1+ 202 n— 3
] 1+—[u—(1+u)uj+

(uzz)} = —3[u — vuz +

3 i o 3 i+
e o (j,m) € (2.63)
and
4,& n T 4
(1) = 57 (%) [0 satatan)? + ot (at)] + O[(a0)"] + O[(ar)']
! (yn) e (2.64)
5
+ O|at(az)®] + O[(at)*(az)?] + %

Note that: (i) the forms of the last four terms in Eq. (2.64) have been simplified using the definition
v = aat/Azx; and (ii) the expression on the right side of Eq. (2.64) represents the truncation error of
Eq. (2.61) if the scheme formed by Egs. (2.61)—(2.63) is considered as a solver of the system of PDEs
Egs. (1.1) and (2.49).

Next we convert Eq. (2.62) into its analytical form by replacing (i) 7, (u)}, and (uss)}, respectively,
with @7, 0, and @}, for each (j,n); and (ii) the index n with n+ 1 everywhere. By using (i) Eq. (2.13), (ii)
v = aat/Az, and (iii) the fact that (j,n+1) € Q < (4,n) € Q, then after a normalization by the factor 1/2,
the analytical form can be expressed as

ndet 1,y 208t 1o aat_ (az)® 4 2aP(at)? _n
(e2)] = 5 (aa) | 5 + B w ;
_ 2 2( A 1)2
1 (1 3 QaAt) 5 Aw—i—amﬁﬁ n (az)? + aatax + a*(At) u?} Gin)eQ  (2.65)
2AT AT 2 6 j+1
n 1 (1 n QaAt) (54 A% = amf?7 n (ax)? — antaz + a?(at)? w}" _ 0
2AT AT 2 6 j—1
Similarly, the analytical form of Eq. (2.63) can be expressed as
nodef 1 iy 2 [~ _aat_ (az)® +24°(at)? ~}"
(63)3 - 6w] (A(E)2 U 9 v+ 12 w ;
1 (. ar+taat_  (ax)? +astaz + a?(at)? ~} n _
_ — ,n) € Q 2.66
(az)2 [u 5 ! 6 Wl (4, n) (2.66)
o1 [ﬁ n AT — aAtﬁ n (ax)? — antaz + a?(at)? w}" 0
(ax)? 2 6 j—1

By using Taylor’s formula and Eq. (2.45), Egs. (2.65) and (2.66) imply that

(e2)! = {v N {817 o6 0 (811 811)} At 0% (at)? 9% [(ax)? — 2a2(at)?]

o ‘o ta\a Tl T 1 Tae 1
ow [a?(at)? — (az)?] 9 0%u  ,0%\ (at)2  (1+1v2)dPa, H\|" (2.67)
"o 6 R ) el T 8 }j

+ O0[(at)’] + O[(at)?az] + O[at(az)?] + O[(az)?] (j,n) € Q
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and

(e3)? = @+[8—2(@+a@)+@72a@+3a&}£
i 7 ox " loxz\ot " T ox ot or 0r2) 6

(jin) €Q (2.68)

[8_2(@ _ Qz@) Pib 2 82@} (at)” (@ _ @) (a2)*
0x2 \ Ot? Ox? ot? 0x21 12 0x3  0x? 6

2 4~
(1+v2)0 U(A:L')2}

"4 O[(a0)"] + O[(at)?as] + O[at(ar)?] + O[(a0)"]

a4
12 Oz ;

Assuming Eqgs. (2.51) and (2.55), (e2)} and (e3)} reduce to

g = (220)" Lo e

+0[(at)?]+0[(at)?az] +0[at(az)?|+O0[(az)?] (j,n) € Q (2.69)

973 ) 12
and
411 n T 2 a2 2
(e3)j = — <%) ‘ [(a2) J;2 (29 ]+O[(At)3]+0[(m)2mc]+O[At(A:c)2]+O[(Aa:)3] (j,n) € Q (2.70)
respectively.

Hereafter, for any v, let the system of equations defined by Eqs. (2.14), (2.15), and (2.59) be referred to
as the basic form of the a(3) scheme while that defined by Egs. (2.61)—(2.63) be referred to as the forward
marching form of the a(3) scheme. Because (i) Egs. (2.14), (2.15), and (2.37) < Eqgs. (2.42)—(2.44) if A # 0,
and (ii) Eqgs. (2.59)—(2.63) are special cases of Eqgs. (2.37), and (2.41)—(2.44), respectively, the basic form of
the a(3) scheme < its forward marching form. Thus the essential conditions represented by these or other
equivalent forms may be referred to simply as the a(3) scheme.

With the above definitions, the expressions on the right sides of Eqs. (2.64), (2.69) and (2.70) represent
the truncation errors of Eqgs. (2.61)—(2.63), respectively, if the forward marching form of the a(3) scheme is
considered as a solver of the system of PDEs Egs. (1.1) and (2.49). According to Egs. (2.69) and (2.70),
(e2)7 — 0 and (e3)? — 0 as at,ar — 0, regardless how at and ax are related when at,az — 0. On
the other hand, Eq. (2.64) implies that (e1)] — 0 as at, Az — 0 only if the mesh refinement procedure is
subjected to the condition

(az)*
At

Thus the a(3) scheme is consistent with the system of PDEs Eqgs. (1.1) and (2.49) if and only if Eq. (2.71)

is satisfied.

At this juncture, we offer the following remarks:

(a) Let at/ax be held as constant as at, Az — 0. Then for this mesh refinement procedure, Eqs. (2.64),
(2.69), and (2.70) imply that the truncation errors for Egs. (2.61)—(2.63), respectively, are third order,
second order, and second order in At and ax. On the other hand, according to the numerical results
presented in Sec. 4, the a(3) scheme generally is 4th order in accuracy for both u and (u,) while only
2nd order in accuracy for (ugz;)}. Note that order of truncation error and order of accuracy represent
total different concepts (see Secs. 5 and 6 in [1]). The former is a measure of how well an analytical
solution satisfies the discrete scheme while the latter represents a measure of how well a solution to
the discrete scheme approximates the corresponding analytical solution. Thus the numerical results
presented in Sec. 4 do not contradict the conclusion reached here.

(b) Because (i) each of the two decoupled subsystems in each of Egs. (2.14) and (2.15) is PT invariant by
itself, and (ii) the system Eq. (2.37) is also PT invariant if o and § are parameters independent of
(4,m), by the definition of PT invariance one can easily see that the basic form of the a(3) scheme is
PT invariant.

—0 as at,az —0 (2.71)
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(¢) Let ¢(j,n) = do(4,n), (4,n) € Q, be a solution to the basic form. Then, by substituting ¢(j,n) = ¢»(j,n)
into the basic form, one obtains a system of identities involving ¢,(j,n), (j,n) € Q. Due to the PT
invariance of the basic form, the above system of identities is equivalent to that obtained by substituting
q(j,n) = Ug,(—j,—n) into the basic form. As such ¢(j,n) = ¢,(j,n), (j,n) € §, represent a solution
to the basic form < §(j,n) = Ug,(—34, —n), (j,n) € Q, represent another solution to the basic form. In
other words, the PT image of a solution to the basic form is also a solution and vice versa. Obviously
this conclusion is valid for other PT invariant forms of the a(3) scheme.

Next, the forward marching form Eqgs. (2.61)—(2.62) will be cast into a matrix form. Let

1 1 1
é(v) def —v , Cr(v) def —(14v) , é-(v) of 1—v (2.72)
(1+2v2)/3 (2/3)(1+v+1?) (2/3)(1 — v +1?)
2 —(1+v)/2 ~(1-v)/2
doW) 2w |, dco® | a-20)2 |, )& -1+20)2 (2.73)
-3 (3/2) (3/2)
. 2 —2v (2/3)(1+21?)
Qo) L dow) ) = | 2v -2 (2/3)w(1 +20?) (2.74)
-3 3v —(1+ 207
ot - —(1+4+v)/2 (1+v)?/2 —(1+v)(1+v+12)/3
Q) d el = t-22)2 —Q-2)1+v)/2 (1-20)1+v+12)/3 (2.75)
3/2 —(3/2)(1+v) 1+v+ 02
and
bt - . —-(1-v)/2 —(1-v)?/2 -1=-v)1-v+1?)/3
QWY d W) = -0+2w)/2 -0+2)0-v)/2 —1+20)1-v+12)/3 (2.76)
3/2 (3/2)(1 —v) 1—v+12

Hereafter ¢* denote the transpose of any column or row matrix ¢ By using Egs. (2.31) and (2.74)-(2.76),
the forward marching form can be cast into the matrix form:

(7(]5”) = QO(V)J(.]an - 1) + QJr(V)lj(.] + lan - 1) + Q*(V)lf(.] - lvn - 1)5 (-]7 n) € (277)

Here the reader is warned that the notations Q4 (v) and Q_(v) used in earlier CESE papers are now replaced
by Q- (v) and Q4 (v), respectively. As such, the terms Q_(v)§(j+1,n—1) and Q4+ (v)(j—1,n—1) in Eq. (3.48)
of [71] appear here as Q+(v)@(j + 1,n — 1) and Q_(v)(j — 1,n — 1), respectively. Also note that each of
Qo(v), Q4+ (v), and Q_(v) is in the form of d @ ! where @ and d are 3 x 1 column matrix. Thus each is a matrix
of rank one (see pp. 80-82 in [74]). Rank-one matrices are singular and have many interesting properties.
As an example, the eigenvalues of Qo(v) are 0, 0, and [¢y(v)]" do(v) with do(v) being the eigenvector of the
last eigenvalue.

To facilitate the proof of the PT invariance of the forward marching form, first we will introduce some
basic concept. Note that, for any set of variables x¢,ye, £ = 1,2, the conditions

T +y1 =22 —y2 and X1 —Yy1 =T2+ Y2 (2.78)

1 =19 and y; = —yo (2.79)
Thus, the image of Eq. (2.78) under any one-to-one mapping

(e, ye) < (2, 9)), =1,2 (2.80)
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ie.
vy +yp =ah—yhp and @) —y) =ah+ ) (2.81)

< the image of Eq. (2.79) under the same mapping, i.e.,
¥y =wy and vy = —yh (2.82)

where the variables zj and y;, £ = 1,2, may or may not be related to x¢,ye, £ = 1,2. Moreover, in case
that these two sets of variables are related, the condition Eq. (2.78) (or its equivalent Eq. (2.79)) may or
may not be equivalent to the condition Eq. (2.81) (or its equivalent Eq. (2.82)). If the mapping Eq. (2.80)
is such that Eq. (2.78) < the image under this mapping (i.e., Eq. (2.81)), then Eq. (2.79) (the equivalent of
Eq. (2.78)) < Eq. (2.82) (the equivalent of Eq. (2.81)). Eq. (2.80) with ), =z, and y; =y, £ = 1,2, is an
example of such mapping while Eq. (2.80) with z, = y, and y; = x¢, £ = 1,2, is not.

To prove the PT invariance of the forward marching form, Note that: (i) the basic form of the a(3)
scheme < its forward marching form for any choice of ¢(j,n), (j,n) € ©; and (ii) the PT images of the basic
and forward marching forms, respectively, are obtained from the basic and forward marching forms through
the mapping Eq. (2.30), i.e., through replacing ¢(j,n) in the basic form and the forward marching form with
Uq(—j,—n), (j,n) € Q. From the above observations and the illustration given in the last paragraph, one
concludes that the PT image of the basic form < that of the forward marching form. Because the basic
form is PT invariant, i.e., the PT image of the basic form < the basic form itself, Now we arrive at the
conclusion that the forward marching form < the basic form < the PT image of the basic form < the PT
image of the forward marching form. Thus the forward marching form < its PT image, i.e., the forward
marching form is PT invariant. QED.

With the above preliminaries, the backward marching form of the a(3) scheme will be developed in
Sec. 2.6.

2.6. The backward marching forms of the a(3) scheme

The PT invariance of the forward marching form of the a(3) scheme implies that Eq. (2.77) < its PT
image, i.e.,

Ug(—j,—n) = Qo) Uq(—7,—n+1)+Q+(UG—j—1,-n+ 1)+ Q_(»)UZ(—j+1,-n+1), (j,n) e

(2.83)
Moreover, by multiplying Eq. (2.83) from left using the matrix U and using Eq. (2.33), one concludes that
Eq. (2.83)

(j’(_j’ _n) = QQ(V)(j(_]’, —n+ 1) + Q—(V)J(_J - 1, —n+ 1) + Q+(V)§(_J + 1, —n+ 1)7 (.77 n) €N (284)

where
2 2v (2/3)(1 + 20v?)

Qo) L UQu()U = | —2v —202 —(2/3)(1 + 20?) (2.85)
-3 —3v —(1+2v?)
A o —(1+v)/2 —(1+v)?/2 —(1+v) A +v+12)/3
Q-W)=UQ (W)U =| -(1-2v)/2 —(1-2v)1+v)/2 —(1-220)(1+v+1?)/3 (2.86)
3/2 (3/2)(1+v) 1+v+1v2
and
A o —(1-v)/2 (1-v)%/2 ~(1-v)(1-v+2v?)/3
Qi EUQ_(WU=| 1+2v)/2 —(1+2)(1-v)/2 (1+20)1—-v+1?)/3 (2.87)
3/2 —(3/2)(1—-v) 1—v+12

By replacing the “dummy” indices —j and —n everywhere in Eq. (2.84) with j and n, respectively, one can
see that the system Eq. (2.84) is identical to the system

q(j,n) = Qo()q(G,n +1) + Q+(V)q(j +1,n+ 1) + Q-(1)q(j — L,n+1), (j,n)€Q (2.88)
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Because the mesh variables at (j,n) can be determined in terms of those at (j — 1,n+ 1), (j,n + 1), and
(j +1,mn+ 1) using Eq. (2.88), hereafter Eq. (2.88) (which is equivalent to other forms of the a(3) scheme)
will be referred to as the backward marching form of the a(3) scheme.

According to Egs. (2.74) and (2.85), Qo(v) = Udy(v) [éo(v)]" U. Because Udy(v) and [éy(v)] U are 3 x 1
column matrix and 1 x 3 row matrix, respectively, Qo(v) is a rank-one matrix. Similarly, Q_(v) and Q (v)
are also rank-one matrices.

Eq. (2.88) was derived using the PT invariance of the forward marching form of the a(3) scheme.
Alternatively, it can also be derived from the basic form. To proceed, note that: (i) by replacing the indices
j and n everywhere in Eq. (2.14) with j + 1 and n + 1 and using the fact that (j,n) € Q< (j—1,n—1) €
Q< (j+1,n+1) €, one can see that the system Eq. (2.14) is identical to the system

21 — v +12) r 2(1 —v+1?) ]Ml’ (j,n) € Q (2.89)

[U + (1 =vuz + g | = [U - (1 =v)uz + S —

(ii) by replacing the indices j and n everywhere in Eq. (2.15) with j — 1 and n + 1 and using the fact that
neQe (+l,n-1)eQs (j—1,n+1) €, one can see that the system Eq. (2.15) is identical to
the system

2(1 4+ v+ v?)

2(1 2 n+1
. Mu] LG e (2.90)

[u(1+l/)um+ ;

um} = {u + (14 v)uz +
J Jj—1

and (iil) by replacing the index n everywhere in Eq. (2.59) with n + 1 and using the fact that (j,n) € Q <
(jyn—1) € Q& (j,n+1) € Q, one can see that the system Eq. (2.59) is identical to the system

1 9 2 n+1
+ev um] (j,n) € Q (2.91)

[ 1+ 202 r
U — Vvug + Uzz
j 3

3 l—{u—l—yum—i- j

As such the system Eqs. (2.89)—(2.91) are identical to Eqgs. (2.14), (2.15), (2.59), respectively.

For each (j,n) € Q, Egs. (2.14), (2.15), and (2.59) form a linear system of three equations for the three
mesh variables u7, (uz)}, and (uzz)}. Egs. (2.89)-(2.91) form another system. Moreover, one can see that,
under the mesh variable mapping

qj,n) < Uq.n), q(G,n—1) < q(j,n+1),

2.92
TG+ Ln-1)oUdj-Ln+1), and §G-1n—1)odG+Ln+1) (2.92)

Egs. (2.89)—(2.91), respectively, are the images of Egs. (2.14), (2.15), and (2.59) and vice versa. By using
the concept introduced earlier in a discussion involving Egs. (2.78)—(2.82), one concludes that the solution
to Egs. (2.89)—(2.91) must be the image of Eq. (2.77) (i.e., the solution to Egs. (2.14), (2.15) and (2.59))
under the same mapping. In other words, the solution to Egs. (2.89)—(2.91) is

U@(], ’I’L) = Qo(V)UCT(j, n+ 1) + Q+(V)U§(J - 17 n+ 1) + Q—(V)UJ(J + 1, n+ 1)7 (.77 n) €N (293)

By multiplying Eq. (2.93) from left using the matrix U and using Eqgs. (2.33) and (2.85)—(2.87), one has
Eq. (2.88). QED.

As a preliminary for the developments in Sec. 3, in the following, important algebraic relations involving
Qo(v), Q+(v), Q_(v), Qo(v), Q4 (v), and Q_(v) will be extracted from the PT invariance of the a(3) scheme.

2.7. Algebraic relations associated with PT invariance

Let (jo,m0) € Q be any given fixed mesh point. Let ¢(jo, no), ¢(jo £ 1,70), and §(j, & 2,n,), respectively,
be the arbitrary initial data specified at (j,,m0), (jo £ 1,m0), and (j, + 2, n,), respectively. Let q(jo, no + 1),
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and ¢(j, = 1,n, + 1) be specified in terms of the mesh variables at the n,th time level using the forward
marching form Eq. (2.77), i.e.,

q(Jo, o + 1) = Qo(v) @(Jo, m0) + Q+ (V) ¢(jo + 1,m0) + Q- (¥) ¢(jo — 1,70) (2.94)
q(Jo +1,n0 +1) = Qo(v) ¢(jo + 1,m0) + Q+(v) §(jo + 2,n0) + Q—(v) §(Jo, 120) (2.95)

and
q(Jo — L,mo + 1) = Qo(v) @(jo — 1,10) + Q+ (V) @0, M0) + Q- () §(Jo — 2,10) (2.96)

On the other hand, because Eq. (2.77) < Eq. (2.88), §(jo,n0o + 1), §(jo £ 1,1, + 1), and ¢(jo, 7o) must also
be linked by Eq. (2.88), i.e.,

G(jor10) = Qo(¥) Gljos 1o + 1) + Q- () qUo + 1imo + 1) + Q- () Gl — 1,10 + 1) (2.97)
Substituting Egs. (2.94)—(2.96) into (2.97), one has
[Qo()Qo(¥) + Q+(Q-(v) + Q- ()Q+(v) = T] o, o)

+ [QO(V)Q-i-(V) + Q-ﬁ-(V)QO(V)} q(jo +1,m0) + [QO(V)Q—(V + Q—(V)QO(V)] q(jo — 1,m0) (2.98)
+Q+(1Q+ (1) Glo +2,10) + Q- (NQ- (1) Gl — 2,10) =0
where [ is the 3 x 3 identity matrix and 0 is the 3 x 1 null column matrix.

Because Eq. (2.98) must be valid for any choice of ¢(j,, 1), §(jo = 1,n,), and ¢(j, & 2,n,), the coeffi-
cients matrices in front of these column matrices must be null identically, i.e.,

Qo()Qo(v) + Q+(VQ- (V) + Q-()Q+(v) = (2.99)
Qo(1)Q+(V) + Q+(¥)Qo(v) = 0 (2.100)
Qo(»)Q-(v) + Q-(1)Qo(v) = 0 (2.101)
Q1 (MQ+(v) =0 (2.102)
and R
Q-()Q-(v)=0 (2.103)

where 0 is the 3 x 3 null matrix. As an example, one can prove Eq. (2.99) by substituting into Eq. (2.98)
each of the following sets of the initial data: (i) (jo £ 1,70) = G(jo £ 2,n) = 0 and §(jo,no) = (1,0,0)F,
(i) @Uo £ 1,m0) = (o £ 2,n0) = 0 and ¢(jo, o) = (0,1,0)*, and (iii) §(jo & 1,70) = §(jo = 2,n0) = 0 and
q(Jo, nO) = (0,0, 1)t'

Similarly, by substituting the backward marching relations

q(Josno — 1) = QO(V) q(Jos10) + QJr(V) q(Jo +1,m0) + Q*(V) q(jo — 1,m0) (2.104)
qJo+1,mo —1) = QO(V) q(jo +1,m0) + Q-i—(”) q(Jo +2,m0) + Q—(V) q(Jos mo) (2.105)

and R R R
q(Jo — 1,n0 = 1) = Qo(v) (jo — 1,m0) + Q+(v) @(jo, o) + Q- (V) ¢o — 2,10) (2.106)

into the forward marching relation

q(Jos o) = Qo(V) §(Jos o — 1) + Q1 (V) @(Jo + 1,10 — 1) + Q—(v) (jo — 1,n0 — 1) (2.107)
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one has

[QO(V)QO(V) +Q+()Q-(v) + Q-()Q+(v) — 1q(jo, ”o)
+ [Qo()Q+ () + Q+ (1) Qo ()] qljo + 1,n0) + [Qo(¥)Q— (v
+ Q+(1)Q+ (1) o + 2,10) + Q- (1)Q—(¥) Gjo — 2,m0) =

)+ Q-()Qo()]dljo — 1,10) (2.108)
0

Because Eq. (2.107) must be valid for any choice of ¢(jo,n0), (4o £ 1,7,), and ¢(j, + 2,n,), one concludes
that

Qo(»)Qo(v) + Q+(1)Q-(v) + Q-(1)Q (V) =1 (2.109)
Qo()Q+ (V) + Q1 (1)Qu(v) = (2.110)
Qo()Q- () + Q-(1)Qo(v) = (2.111)
Q+(1)Q+(v) =0 (2.112)
and
Q_(Q_(v) =0 (2.113)
By using Egs. (2.32) and (2.85)—(2.87), it can be shown that: (i) Eq. (2.99) < Eq. (2.109) <
Qo(UQo(v) + Q-(V)UQ-(v) + Q1+ (MUQ+(v) =U (2.114)
(i) Eq. (2.100) < Eq. (2.111) <
Qo(UQ+ (V) + Q- (V)UQo(v) =0 (2.115)
(iii) Eq. (2.101) < Eq. (2.110) <
QUQ_(v) + Q4 (UQo(v) = 0 (2.116)
(iv) Eq. (2.102) < Eq. (2.113) <
Q_(UQ,(v) =0 (2.117)
and (v) Eq. (2.103) & Eq. (2.112) &
QL (NUQ_(v) =0 (2.115)
2.8. Other invariant properties and related algebraic relations
By using Egs. (2.32) and (2.74)—(2.76), one can show that
Qo(—v) = UQu(W)U, Q-(—) =UQ,()U, and Qi(—v) =UQ_(W)U (2.119)
By using Eqgs. (2.85)—(2.87), one can also show that Eq. (2.119) <
Qo(—v) =UQu(WU, Q_(—v) =UQy(WU, and Qi (—v)=UQ_(v)U (2.120)

As will be shown, the above relations are linked with other invariant properties of the a(3) scheme.
Let the advection speed a in Eq. (1.1) be considered as a variable parameter. Let u = u(x,t;a) be a
solution to Eq. (1.1), in the domain —oco < z,t,a < 400, i.e.,

ou(z,t; a) ou(z, t;a)
ot ta ox

=0, —0 <z, t,a < 400 (2.121)

Let
= -z, t''=t and da = —a, —00 < x,t,a < +00 (2.122)
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and
fu(—z, t;—a) (2.123)

Then (i) Eq. (2.121) &

ou(z',t';a’)  ,0u(a’,t';a)

_ . rogr
5 +a 5 =0, co< 2t d < +oo (2.124)
and (ii)
0 0 0 0
— = = d —=—-——— 2.125
a ot M o ox ( )
Thus one concludes that Eq. (2.121) <
ou(z, t;a) ou(x,t;a)
5 +a pe =0, —o0 < z,t < 400 (2.126)

In other words, if u = u(x,t;a) is a solution to Eq. (1.1), so must be v = @(z, t;a) and vice versa. Because
the one-to-one mapping

(x,t,a) < (—z,t,—a), —00 < x,t,a < +00 (2.127)

represents a combined spatial-reflection (parity) and advection direction reversal (ADR) operation, hereafter
(i) a pair of functions such as u and @ will be referred to as the PADR images of each other; and (ii) a PDE
such as Eq. (1.1) is said to be PADR invariant if the PADR image of a solution is also a solution and vice
versa.

Because v = aat/Ax, the numerical analogue of Eq. (2.127) is

(j,n) < (=4,n) and v —v (2.128)

Motivated by an argument similar to that leads to Eq. (2.30) for PT mapping, the PADR mapping for the
a(3) scheme is defined by

qg,n) < Ug(—j,n) and v e —v, (4,n) € Q (2.129)
Thus the PADR image Eq. (2.77) is

Ug(—j,n) = Qo(—)Uq(—j,n— 1)+ Q4+ (—)Uq(—j — 1,n = 1)+ Q_(—v)Uq(—j + 1,n — 1), (j,n) €
(2.130)
By using Egs. (2.32) and (2.119), it can be shown that Eq. (2.130) <

q(—j,n) = Qo(W)q(=j;n =)+ Q-(V)q(—=j - Ln -1+ Q (V)q(—j + Ln—-1),  (,n)€Q (2.131)

By replacing the dummy index —j with j everywhere in Eq. (2.131) and using the fact that (—j,n) € Q <
(j,n) € Q, one concludes that Eq. (2.131) & Eq. (2.77). Thus Eq. (2.77) is PADR invariant, i.e., it is
equivalent to its PADR image.

By exchanging the roles of z and ¢, one can define invariance under a combined time reversal and
advection direction reversal operation. Because (i) this operation is equivalent to a PT operation followed
by a PADR operation or vice versa, and (ii) Eq. (1.1) and the a(3) scheme are invariant under both PT
and PADR operations, one concludes that Eq. (1.1) and the a(3) scheme are also invariant under the new
operation. In fact, invariance of the a(3) scheme under this new operation can be proved using Eq. (2.120)
(which is equivalent to Eq. (2.119)).
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3. von Neumann analysis

Let G(v,0) be a 3 x 3 nonsingular complex matrix function of v and the phase angle 6 such that
qG,n) =" [Gw,0)]"b,  (jin) €D —0<v<4oo; —wr<O<7  (i=V-1) (3.1)

is a solution to Eq. (2.77) for all possible complex constant 3 X 1 column matrices b. Note that: (i) without
any loss of generality, hereafter the domain of 6 is limited to —m < 8 < 7 and, unless specified otherwise,

e _1) 7!
this domain will be assumed implicitly; and (ii) because [G(v, 0)]" def {[G(V, 0)] 1} for an integer n < 0,

[G(v,0)]" is not defined if n < 0 unless [G(r, )] " exists, i.e., G(v, #) is nonsingular. By substituting Eq. (3.1)
into Eq. (2.77), one has

[G(,0) = Qo(v) — Q1 (v) — e ?Q_(1)] [G(v,0)]" b =0, n=0,+1,42,... (3.2)
Because (i) [G(v,0)]° = I, and (ii) b can be any complex constant 3 x 1 column matrix, Eq. (3.2) <
G(r,0) = Qo(v) +e“Q1(v) + e Q-(v) (3-3)

By definition, G(v, 8) is the amplification matrix of the forward marching form of the a(3) scheme. Because
Qo(v), Q+(v), and Q_(v) are real matrices, Eq. (3.3) implies that

G(v,—0) = G(v,0) (3.4)

Hereafter M denotes the complex conjugate of any matrix M. Also, with the aid of Eq. (2.119) and the
relation U = U™, one has
G(~v,0) =UG(v,—0)U = UG (v, -0)U * (3.5)

At this juncture, some comments on the dual roles played by the amplification matrix G(v,6) in de-
termining the accuracy and the stability of the a(3) scheme are in order. Note that the von Neumann
analysis represents essentially a rigorous discrete Fourier analysis performed for a Fourier mode of a solution
to a linear marching scheme such as Eq. (2.77) assuming periodic spatial boundary conditions (see Sec. 4
in [1]). The only difference between them is that the parameter § (which specifies a Fourier mode) in the
von Neumann analysis can assume any value in the domain —7m < 6 < 7 while that in the discrete Fourier
analysis can only assume a set of K uniformly distributed discrete values within the domain —7 < 0 < 7 if
the spatial domain is divided into K uniform mesh intervals. As such, the time evolution and therefore the
accuracy of a Fourier mode of a solution to a linear scheme assuming periodic spatial boundary conditions
can be determined using the corresponding amplification matrix (see Sec. 5 in [1]). Moreover, because a
linear combination of solutions to a linear marching scheme is also a solution by itself, the time evolution
of any Fourier mode of the round-off errors originally introduced during any marching step is also governed
by the linear scheme and therefore it can also be determined using the amplification factor. As a result of
this consideration and the facts that: (i) a scheme is stable if and only if these round-off errors will not
be amplified without bound after many marching steps, and (ii) the spectrum of round-off errors generally
covers all possible Fourier modes, i.e., all possible discrete values of 6, one concludes that, assuming periodic
spatial boundary conditions, the a(3) scheme is stable for a given v if and only if, for all possible K discrete
values of 0 in the domain —m < 0 < 7, every element of the matrix [G(v,0)]™ remains bounded as the
positive integer m — +o00. Because the distribution of the allowed discrete values of # becomes very dense
in the domain —7 < 6 < 7 for a large K, for simplicity, the K discrete values of 6 referred to in the above
stability definition is replaced by all values of 8 in the domain —7 < 8 < 7 in Definition 1 of Sec. 3.9.

In the following, we will show that the a(3) scheme must be neutrally stable when it is stable.

3.1. Neutral stability of the a(3) scheme

NASA/TM—2008-215138 22



By using Egs. (2.114)—(2.118), one can show easily that

UlQo(v) +€“Q_(v) + e Qs()|U [Qo(v) + Q4 (v) + e *Q_(v)]

_ _ _ _ (3.6)
= [Qo(r) + Q1 (v) + e Q-()]U [Qo(v) + e“Q-(v) + e Q1 (v)]U =1
Thus G(v,0) defined in Eq. (3.3) is nonsingular and its inverse is
(G 0] = U [Qo(v) +€"Q-(v) + e Q)] U (37)

Indeed, with the aid of Eq. (2.85)—(2.87), Eq. (3.7) is what one obtains after substituting Eq. (3.1) into the
backward marching form Eq. (2.88). Moreover, by using Egs. (2.32), (3.3), (3.4), and (3.7), one has

G, 0)] ' = UG, 0)U ! (3.8)

For each (v, 0), let the three eigenvalues of G(v, 8) be denoted as o,(v, 8), £ = 1,2, 3, respectively. They
will be referred to as the amplification factors of the a(3) scheme. Because G(v, #) is nonsingular,

oo(v,0) # 0, (=1,2,3 (3.9)

(see part (i) of Theorem 1 given below). Also, as will be shown, o¢(v,0), £ = 1,2, 3, satisfy the following set
condition:

{UI(; 6)’ og(i, 0)’ 03(; 9)} = {0100, 2:000), 7:0.0)} (3.10)

Hereafter Z denotes the complex conjugate of any complex number z.

As a preliminary, first we introduce the following well-known matrix theorems:

Theorem 1. Let A be a nonsingular N x N matrix with the eigenvalues Ay, £ = 1,2,..., N. Then (i)
A #0,0=1,2,...,N; and (ii) the eigenvalues of A=! are 1/, £ =1,2,..., N.

_ Theorem 2. Let Abe a N x N matrix with the eigenvalues A¢, £ =1,2,..., N. Then the eigenvalues

of A, the complex conjugate of A, are Ay, £ =1,2,..., N.

Theorem 3. Let A and B be two similar N x N matrices, i.e., there exists a nonsingular N x N matrix
S so that B = S71AS. Then A and B have the same eigenvalues, counting multiplicity.
Theorems 1 and 2 are proved in Appendix A, while Theorem 3 is proved on p. 45 of [76].

To prove Eq. (3.10), note that part (ii) of Theorem 1 implies that, for any (v, 0), the eigenvalues of
[G(v,0)] " are 1/04(r,0), £ = 1,2,3. Next, by using Theorems 2 and 3, and the fact that (U~!)~! = U,
one can see that the eigenvalues of the matrix on the right side of Eq. (3.8) are o¢(v,0), £ = 1,2,3. Thus
Eq. (3.10) now is an immediate result of Eq. (3.8). QED.

An immediate result of Eq. (3.10) is

1 1 1
g1 (I/, 9) 0'2(V, 6‘) 03(1/, 9)

=01(1,0) - 02(v,0) - 03(v,0)

i.e.

lo1(v,0)] - |o2(v,0)] - los(v,0)] =1 (3.11)

As will be shown in Sec. 3.9, for any given v, a necessary condition for the stability of the a(3) scheme is
|oe(v,0)] <1, £=1,2,3 (3.12)
Thus Eq. (3.11) implies that, for any given v, the a(3) scheme must be neutrally stable, i.e.,

oo (v, 8)| =1, (=1,2,3 (3.13)
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if it is stable. As such, Eq. (3.8) does not imply neutral stability of the a(3) scheme. However, it does imply
that the scheme can only be neutrally stable (i.e., non-dissipative) if it is stable. Here we have reached this
conclusion without using the explicit form of o,(v,0), £ =1,2,3.

At this juncture, note that one can obtain

oo(—v,0) = oi(v, —0) = 04(v,0), =1,2,3 (3.14)

by using Egs. (3.4) and (3.5) along with Theorems 2 and 3.
Eq. (3.10) and (3.14) are the fundamental relations governing the eigenvalues of G(v, 8). In the following,
we explore other properties of these eigenvalues.

3.2. Characteristic equation of G(v, )
By using Egs. (2.74)—(2.76) and (3.3), one has

G, 0) =
2(1+ 212 2iv(2 2
2 —cosf —ivsinf  2v(cosf — 1) +i(1+ v?)sinf %(1 —cosf) — 224y sin 0
2v(1 + 202 2i(1 — v?
2v(1 — cos) +isin® (202 —1)cosf — 2% +ivsinf #(1 —cosf) + z1 =) sin 6
3(cosf — 1) 3v(1 —cosf) — 3isinf 2(1+v?)cos — 1 — 202 + 2ivsind
—oco<vrv<+oo;, — <0<
(3.15)
It follows from Eq. (3.15) that (i)
det[G(v,0)] = —1 (3.16)
and (ii) any eigenvalue o of G(v,6) must be a root of the characteristic equation:
det[o] — G(v,0)] = 0> + h(v,0)0* + h(v,0)0 +1 =0 (3.17)
where )
h(v, 0) EE . 41°%(1 — cosf) — 2ivsinf (3.18)

The reader may be surprised by the simple result Eq. (3.16). However, by using Eq. (3.3) and the fact
that cach of Qo(v), Q4 (v), and Q_(v) has the form d&® with & and d being 3 x 1 column vectors, an
application of the fundamental definition of determinant (in which the Levi-Civita antisymmetric symbol is
used) leads to the conclusion that det[G(v, 8)] must be independent of 6, i.e., det[G(v, 0)] = det[G(v,0)]. As
such, Eq. (3.16) now follows from the fact that G(v,0) = U (see Egs. (3.15) and (2.32)) and det(U) = —1.
Hereafter, for simplicity, the arguments v and # may be omitted if no confusion would arise.

Because 01, 09, and o3 are the eigenvalues of G, Eq. (3.17) implies that

o3+ ho? +ho+1=(0—01)(0c —02)(0 —03) (3.19)

for any complex variable o. On the other hand, because Eq. (3.10) <

1 1 1
01(v,0), o2(v,0), o3(v,0)} = , , 3.20
{01(v,0), 02(v,0), o3(v,0)} { 00 500 500 } (3.20)

1/071, 1/73, and 1/73 must also be the eigenvalues. Thus

_ 1 1 1
03+h02+h0+15<0—:) (U—:) (U—:) (3.21)
01 02 a3
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for any complex variable 0. In the following, Eq. (3.21) will be derived directly from Eq. (3.19) without
using any other assumption.

Proof. Egs. (3.19) &
010903 =—1, 0109+ 0903+ 0301 :E, and o1+ 09+03=—h (322)

Eq. (3.9) follows from the relation oy0903 = —1. Also 010903 = —1 < Eq. (3.21) is valid if 0 = 0.
Let o # 0. Then, by replacing o with 1/ in Eq. (3.19), one has

1 h h 1 1 1
—3 +__2 +:+1: (:0'1) (:(7'2) (:O’g) (323)
ag ag ag g ag ag

Also, by using the relation c10903 = —1, one has
0° = (=7/01)(=7/02)(—T/03) (3.24)

Because the product of the expressions on the left sides of Eq. (3.23) and (3.24) equals to that on the right

sides, we have
— 1 1 1
63+h52+h6+1=(6——> (E——) (E——) (3.25)
g1 g9 g3

Eq. (3.21) is the complex conjugate form of Eq. (3.25). QED.
Moreover, according to Eq. (3.18),

h(=v,0) = h(v,—60) = h(v,6), —o<v<+4oo; —m<O< T (3.26)

Thus Eq. (3.14) can also be derived directly from Eq. (3.19).
In this section, we will prove the following proposition:

Proposition 1. |o4(v,0)| =1 for all £ and 6, £ =1,2,3, and —7 < 6 <, if and only if |v| < 1/2.
Proposition 1 can be divided into two parts, i.e.,

Proposition 1(a). |o¢(v,0)| =1 for all £and 0, £ =1,2,3, and —7 < 0 < 7, if |v| < 1/2.

and

Proposition 1(b). For any v with |v| > 1/2, there is a pair of ¢, and 6§, such that
ly=1,2,3, —w<0,<m, and |op (v,0,)] #1 (3.27)

A simple proof for Proposition 1(a) will be given in Sec. 3.3. Based on more exhausted developments, another
proof for Proposition 1(a) and a proof for Proposition 1(b) will be given in Sec. 3.7.

3.3. A proof for Proposition 1(a)

First we introduce the following well-established algebraic theorem:

Theorem 4. Let 01,09,...,0n/ be the distinct roots of the Nth-order algebraic equation
oN +a1oN Mt aeN 2+ tany_1o+an =0 (3.28)
where a1, as,...,ay are complex constant coefficients and o is a complex variable. For each £ =1,2,..., N,

let my > 1 denote the multiplicity of the root gy. Then

N’ N’
oN + a0V M+ aeN 24 tay_1o+an = H(a—ag)m’f and ng =N (3.29)
(=1 (=1
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According to the above theorem, for any given (v,0), the roots of the cubic equation Eq. (3.17) must
fall into one of the following three mutually exclusive cases: (a) there is one triple root (multiplicity = 3);
(b) there are one double root (multiplicity = 2) and one simple root (multiplicity = 1) and (c) there are
three simple roots.

Consider case (a). Then o1 = 02 = 03. Let o, denote the common value of o1, o2, and 3. Then
Egs. (3.9) and (3.20) imply that (i) 0, # 0 and (ii) 1/7, must also be a triple root of Eq. (3.17). Thus the
only choice that will not contradict Theorem 4 is that o, = 1/7,, i.e., |0,| = |o1]| = |o2| = |o3| = 1.

Consider case (b). Without any loss of generality, one can assume o1 = 02 # 03. Again let o, denote
the common value of o1 and o2. Then Egs. (3.9) and (3.20) imply that (i) o, # 0; (ii) o3 # 0; and (iii) 1/7,
and 1/&3 must also be a double root and a simple root of Eq. (3.17), respectively. Thus the only choice that
will not contradict Theorem 4 is that o, = 1/7, and o3 = 1/73, i.e., |0,| = |o1] = |o2| = |o3] = 1.

The conclusions reached above imply the following lemma:

Lemma 1. For any given (v,0), the roots of Eq. (3.17) must all be of unit magnitude if any one of
them is a multiple root.

Thus, to prove Proposition 1(a), we need only to consider case (c), i.e., the case with
01 # 09, o01# 03, and o0y # 03 (3.30)
To proceed, each o4(v, 0) is expressed in its polar form, i.e.,
o0(v,0) = ro(v, 0)e'?e 0 (=1,2,3; —co<v <400, —1<0<T7 (3.31)
where, because of Eq. (3.9)
re(v,0) < oy (v,0)] > 0, (=1,2,3; —co<v <400, —T<f<m (3.32)
Moreover, for each oy(v,8), the corresponding phase angle ¢4 (v, 6) is uniquely defined by Eq. (3.31) and
—m < ¢y(v,0) <, £=1,2,3; —co<v<+oo; —m1<O<7 (3.33)

Hereafter, the arguments v and # may be dropped from 7,(v, 6) and ¢.(v, ) if no confusion would arise. It
follows from Eqgs. (3.31) and (3.32) that

1/37 = (1/r¢)e'", 0=1,2,3 (3.34)
Also, by using Egs. (3.31)—(3.33), Egs. (3.30) can be expressed as the following ordered pair inequalities:

(r1,01) # (r2,¢2), (r1,01) # (r3,¢3), and (r2, ¢2) # (73, ¢3) (3.35)

The distribution of ¢1, ¢2, and ¢3 must fall into one of the following mutually exclusive cases: (c1) all
have distinct values; (¢2) two of them have the same value while the third assumes a different value; and
(¢3) all have the same values. In the following, these sub-cases will be discussed separately.

Consider case (c1) where

o1 # ¢2, b1 # g3, and @2 # P (3.36)
Because Egs. (3.20) and (3.34) imply that (1/7¢)e?¢, £ = 1,2, 3, must also be roots of Eq. (3.17), Eq. (3.36)
implies that the only choice that will not contradict Theorem 4 is that r, = 1/r¢, e, rp =1, £ = 1,2,3.
Thus, for case (c1), again we have |o1| = |o2| = |o3| = 1.
Consider case (¢2) where, without any loss of generality, one can assume that
1 =2 # ¢3 (3.37)

NASA/TM—2008-215138 26



Because of (3.35), Eq. (3.37) implies that
T1 7§ T2 (338)

By using Egs. (3.37) and (3.38) along with the fact that (1/7,)e’?, £ = 1,2, 3, must also be roots of Eq. (3.17),
one concludes that the only choice that will not contradict Theorem 4 is that riro =1, 1y # 1, ro # 1, and
r3 = 1. Thus, for case (c2), (i) one of the roots is of unit magnitude while the other two are not; and (ii)
the product of the magnitudes of the two roots which are not of unit magnitude is one.

Consider case (c3) where

1 =2 =3 (3.39)
Because of Eq. (3.35), Eq. (3.39) implies that

r1#re, T1F£713, and 719 F£7T3 (3.40)

By using an argument similar to that invoked in the discussion of case (c2), one concludes that, for case
(c3), again (i) one of the roots is of unit magnitude while the other two are not; and (ii) the product of the
magnitudes of the two roots which are not of unit magnitude is one.

As a result of the above discussions, we have the following lemma:

Lemma 2. For any given (v, ), the case with at least one of the roots of Eq. (3.17) not being of unit
magnitude may occur only if it meets the following conditions: (i) one and only one of r1, r9, and r3 is of
unit magnitude; and (ii) the two roots that are not of unit magnitude share the same phase angle and the
product of their magnitudes is one.

Consider any case that meets the conditions referred to in Lemma 2. Then, without any loss of generality,
one may assume that

r1ro = 1, 1 75 1, ry = 1, and (251 = ¢2 = ¢ (341)

where ¢ denotes the common value of ¢; and ¢o. Moreover, by using Eq. (3.31), Egs. (3.18) and (3.22)
imply that

T1T2T36i(¢1+¢2+¢3) =1 (3.42)
r1ree (@1t ®2) g g et(01998) o paei(@2t3) — 1 4 41%(1 — cos ) + 2ivsinf (3.43)
and . . ‘
r1e 4 rpet®? 4 rgei®t =1 — 4%(1 — cosf) + 2ivsinf (3.44)
Because of Eq. (3.32), Eq. (3.42) &
r1rer3y = 1 (345)
and
eildrtéates) _ (3.46)

By using Egs. (3.45) and (3.46), Eq.(3.43) &

1 . 1 . 1 .
—eiP p —ei2 e — 1 — 41%(1 — cos ) + 2ivsinf (3.47)
™ 2 T3

Thus Eqgs. (3.44)—(3.47) represent all the independent constraints imposed on r; and ¢y, £ = 1,2, 3.
Note that: (i) Eq. (3.41) implies Eq. (3.45); and (ii) Eqgs. (3.41) and (3.46) imply that

€01 = ¢'%2 = ¢® and €98 = —e W1 Fd2) = 720 (3.48)

Let
p Xy (3.49)

Then, with the aid of Egs. (3.41) and (3.48), both Egs. (3.44) and (3.47) reduce to

f(p)e® —e 2% =1 — 402(1 — cos ) + 2ivsin b, —rT<¢<m p>0and p#1 (3.50)
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where

£(p) d:efp+%, p>0andp#1 (3.51)
Eq. (3.50) <
f(p)cos ¢ — cos(2¢) = 1 — 4v*(1 — cos6), —r<¢<m p>0andp#1 (3.52)
and
f(p)sin ¢ + sin(2¢) = 2vsin 6, —r<¢<m p>0and p#1 (3.53)

Thus, given any (v,0), Egs. (3.52) and (3.53) must admit a solution for p and ¢ in the specified domain if
the case Eq. (3.41) indeed exists.
To explore Egs. (3.52) and (3.53), note that (i)

[£(p) cos & — cos(2¢)]* + [ (p) sin ¢ + sin(2¢)]* = [1 — 4*(1 — cos 0)]* + [2vsin 6] (3.54)

is a direct result of Eqgs. (3.52) and (3.53); (ii)

[£(p) cos ¢ — cos(26)]* + [/ (p) sin ¢ + sin(26)]* = [£(p) — 1]* + 2 (p) [1 — cos(3¢)] (3.55)
and (iii)
[1—402(1 — cos 9)}2 + [2vsin6]® =1 — 42(1 — 402)(1 — cos §)? (3.56)

Next, because (i) the minimum of f(p) in the domain p > 0 occurs at p =1 and (i) f(1) = 2, we have
flp)>2 if p>0andp#1 (3.57)

Combining Eqs. (3.55) and (3.57), and using the fact that 1 — cos(3¢) > 0 for all ¢, one has

[f(p) cos ¢ — cos(20)]* + [f(p) sin ¢ + sin(2¢)]* > 1 if p>0and p#1 (3.58)

On the other hand, because 1 — 412 > 0 if |v| < 1/2, Eq. (3.56) implies that
[1—4°(1—cos)]” + [2vsing)? <1 if [v] <1/2 (3.59)
Combining Egs. (3.58) and (3.59), one arrives at the conclusion that, for all 6,
[£(p) cos ¢ — cos(26))* + [£(p) sin ¢ + sin(2¢)]* > [1 — 4*(1 — cos )] + [2vsin 6] (3.60)

i.e., Eq. (3.54) cannot be satisfied, if (i) |v| < 1/2; and (ii) p > 0 and p # 1. Because Eq. (3.54) is a direct
result of Egs. (3.52) and (3.53), this implies that, for any 6, Eqgs. (3.52) and (3.53) admit no solution for p
and ¢ in the specified domain, i.e., the case Eq. (3.41) does not exist, if |v| < 1/2. In turn, this implies that,
for all 6, the roots of Eq. (3.17) are all of unit magnitude if || < 1/2, i.e., Proposition 1(a) has been proved.
QED.

Note that, for a reason to be given in Sec. 3.9, by itself Proposition 1(a) does not imply that a(3)
scheme is stable when |v| < 1/2. Next, as a preliminary for later developments, several special cases will be
discussed in Secs. 3.4 and 3.5.

3.4. The |v| = 1/2 case
Let v = 1/2. Then Eq. (3.17) reduces to

o —e? —e o+ 1= (0— ew) (o - e*w/Q) (O’ + 671‘9/2) =0, —7m<0<7m (v=1/2) (3.61)
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Thus the roots of Eq. (3.17) are
o =o00(0) Le® and o= o+ (0) def Lemif/2 —r<f<7m (v=1/2) (3.62)

On the other hand, by using Egs. (3.14) and (3.62), one concludes that the roots for the case v = —1/2 are

c=00f)=e" and o=o04(0) = +e?/? —r<f<7m (v=-1/2) (3.63)

For each of the above two cases, Egs. (3.62) and (3.63) imply that the these roots are distinct if
27
0#£0 and |0 # 3 (lv] =1/2) (3.64)

In fact, there are one double root and one simple root if § = 0 or |§] = 27/3. Also, because the analytical
amplification factor is e~ for any (v, ) (see p.4 of [61]), for the case v = 1/2 (v = —1/2), one of the roots
of Eq. (3.17), i.e., 04 (0) (04(0)), is identical to the analytical amplification factor.

Consider the plane wave solution

u(z,t) = etkl@=at) (ka #0) (3.65)
The period associated with this solution is
27
= — 3.66
Let n, the number of total marching steps, and at be chosen such that
nat = NT, N=1,23,... (3.67)
Then, by using Eq. (3.66), one has
2rN
n= —: (3.68)
6]l
where
0 =kax#0 (3.69)
is the variation of phase angle over the interval az. For the case |v| = 1/2, Eq. (3.68) reduces to
4r N
n= % (nat = NT; |v| = 1/2)) (3.70)
Egs. (3.62), (3.63), and (3.70) imply that
o2 (0))" = |o=@)] = (1) (3.71)
and "
[00(0)]" = [00(9)] =1 (3.72)
Thus "
[0+ (0)]" = [oi(H)} =1, if n is even (3.73)
On the other hand, Eq. (3.68) implies that
(em™)" =1 (3.74)

NASA/TM—2008-215138 29



By using an analytical procedure similar to that used in Sec. 5 of [1], one can show that Eqs. (3.72)—(3.74)
and the fact that e~ is the analytical amplification factor lead to the conclusion that, for the case |v| = 1/2,
the numerical solution generated by the a(3) scheme in a simulation involving a periodic boundary condition,
aside from round-off errors, should be identical to the exact solution if (i) n and At are chosen according to
Eq. (3.67), and n is even; and (ii) the phase angles of the Fourier components involved in the simulation
observe the condition Eq. (3.64) (i.e., the three eigenvalues associated with each Fourier component are
distinct). This prediction has been verified numerically (see Sec. 4).

Next, a brief discussion on the roots of Eq. (3.17) for the three special cases: (a) v = 0; (b) 6 = 0; and
(¢c) 8 = will be given in Sec. 3.5.

3.5. Three other special cases
Let v =0 or § = 0. Then Egs. (3.17) and (3.18) imply that

03— —o4+1=(0—-1)3%c+1)=0 (3.75)
i.e., the roots of Eq. (3.17) are 1, 1, and —1. According to Egs. (3.31)-(3.33), (i) 11 = re =r3 = 1, and (ii)
one can assume that ¢ = ¢o = 0 and ¢3 = 7.
Let 6 = m. Then Egs. (3.17) and (3.18) imply that
o+ @8 =10+ 8 —1)o+1=(0+1) [0* +2(4* - 1o+ 1] =0 (3.76)
i.e., the roots of Eq. (3.17) are 0 = —1 (i.e., r¢y = 1 and ¢y = 7 for a value of ¢), and
o=1—40%4/8v2(202 — 1) (3.77)

We have
-4 — /8222 —1) <1-2=—1 if 202 >1

ie.,
‘1 0P SR (2R 1)‘ S1 0 22> 1 (3.78)

Thus the magnitude of at least one root of Eq. (3.17) is greater than one if § = 7 and |v| > 1/+/2.
On the other hand,

’1 4+ 8222 1)’ = ’1 Y RN vA 2,,2’

(3.79)
=1 =422 +82(1 —202) =1 if 22 <1
Thus, for the case § = 7w and |v| < 1/v/2, r; =75 = 3 = 1. Moreover, for the special case
=7 and |v]=1/V2 (3.80)

Eq. (3.76) reduces to (o +1)3 = 0, i.e., —1 is the triple root of Eq. (3.17). In fact, it will be shown in Sec. 3.6
that the only possible triple root of unit magnitude for Eq. (3.17) is —1 and it has this root only for the case
Eq. (3.80).

Eq. (3.17) has three roots for any given (v,0). In Sec. 3.6, we derive a set of equations governing the
phase angles of these roots when they all are of unit magnitude. To pave the way, let

U {(1,0)] — 00 <v < +oo; —m <0<, and ri(v,0) = ra(v,0) = r3(v,0) = 1} (3.81)

and )
U, ©{(1,0)|v £0, 0< 0] <, and r1(v,0) = ra(v,0) = r3(v,0) = 1} (3.82)
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According to Proposition 1(a) (which has been proved), (v,0) € ¥ if || < 1/2 and —7 < 0 < 7.
3.6. Phase angle equations for (v,0) € U
With the aid of Eq. (3.22), and (3.31)—(3.33), one concludes that the condition

ri1(v,0) =ra(v,0) =r3(v,0) =1 (3.83)
& the real phase angles ¢y (v,0), £ = 1,2, 3, satisfy

pild1+dates) — _ 1 (3.84)

el P1H92) 4 ild149s) 4 ild2Hds) — 1 4 4p2(1 — cosh) 4 2ivsinh, —oo <v < 4oo; —m<O<m (3.85)

and
e 4 ei?2 4 % = 1 — 41%(1 — cos ) + 2ivsin b, —oo<v<4oo; —m<f< (3.86)

Because (i) Eq. (3.84) implies that

ei(¢1+¢2) _ —€_i¢3, ei(¢1+¢3) — —€_i¢2, ei(¢2+¢>3) — _e i1 (3.87)

and (ii) the complex conjugate of Eq. (3.86) is
eI p T2 478 =1 — 412(1 — cosf) — 2ivsind (3.88)

one can see easily that Eq. (3.85) is a result of Egs. (3.84) and (3.86). Thus Eq. (3.83) < Eqgs. (3.84) and
(3.86).

At this juncture, we will prove that the only possible triple root of unit magnitude for Eq. (3.17) is —1
and it has this root only for the case Eq. (3.80).

Proof. Let Eq. (3.17) have a triple root of unit magnitude. Then (v,0) € ¥ and ¢; = ¢2 = ¢3. With
the aid of Eqs. (3.33), in turn Eq. (3.84) implies that either (a)

1 =¢2=¢3=m (3.89)

or (b)
¢1 =2 = ¢p3 = £7/3 (3.90)

For case (a), by substituting Eq. (3.89) into Eq. (3.86), one has
v*(1 —cosf) =1 and vsinf =0 (3.91)

which < cosf = —1 and |v| = 1/v/2. Because —7 < 6 < 7, in turn Eq. (3.91) < Eq. (3.80), i.e., case (a) is
the same case defined by Eq. (3.80).
For case (b), by Substituting Eq. (3.90) into Eq. (3.86), one has

(3/2)(1 £v34) =1 — 4%(1 — cosf) + 2ivsinf (3.92)
By taking the real part of Eq. (3.92), one arrives at the result
V(1 —cosf) = —1/8 (3.93)

Because v2(1 —cosf) > 0 for any (v,6) and —1/8 < 0, Eq. (3.93) cannot be true and therefore case (b) does
not exist. QED.
Let (v,0) € ¥. Then Egs. (3.84) and (3.86) are valid. By eliminating €!** from Eqgs. (3.84) and (3.86),
one has
e itz — T @1tP2) — 1 _ 41%(1 — cosf) + 2ivsin b (3.94)
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By separating the real and imaginary parts of Eq. (3.94), we have
cos ¢y + cos a2 — cos(¢1 + ¢2) — 1 = —41*(1 — cos ) (3.95)

and
sin ¢1 + sin ¢g + sin(¢y + ¢2) = 2vsin b (3.96)

Similarly, one can show that

€08 (g + cos 3 — cos(¢a + ¢3) — 1 = —41%(1 — cos ) (3.97)
sin ¢ + sin ¢3 + sin(¢o + ¢3) = 2vsinf (3.98)
cos ¢3 + cos ¢y — cos(p3 + ¢1) — 1 = —4v*(1 — cosh) (3.99)
and
sin ¢3 + sin ¢1 + sin(¢3 + ¢1) = 2vsinf (3.100)

At this juncture, note that Eqgs. (3.95), (3.97), and (3.99) imply that
v (1 —cosf) =0 if ¢y =0 for any £ =1,2,3 (3.101)

Because —m < 6 < m, Eq. (3.101) implies that at least one of the two cases (a) ¥ = 0 and (b) § = 0 must
occur if ¢y = 0 for any £ = 1,2,3. It is shown in Sec. 3.5 that, for v = 0 or § = 0, indeed ¢, = 0 for two
different values of ¢.

On the other hand, Eqs. (3.96), (3.98), and (3.100) imply that

vsin =0 if ¢p=mforany¢=1,2,3 (3.102)

Because —7 < 6 < 7, Eq. (3.102) implies that at least one of the three cases (a) v =0, (b) 6 =0, (c) § =7
must occur if ¢y = 7 for any £ = 1,2, 3. It is also shown in Sec. 3.5 that, for any of above three cases, indeed
¢¢ = 7 for a value of £.

Using the above results along with Egs. (3.33) and (3.82), one arrives at the important conclusion that

0<|pe(v,0)| <m, €=1,2,3, if (v,0) e, (3.103)

To eliminate ¢s, let (i) Eq. (3.95) be multiplied by (1+cos ¢1); and (ii) Eq. (3.96) be multiplied by sin ¢;.
After subtracting the resulting equations from each other, a rearrangement using elementary trigonometry
yields

sin? ¢y — 20%(1 — cos ) (1 + cos ¢h) — vsin@sinp; = 0 (3.104)

By applying similar manipulations over Eqgs. (3.97), (3.98), (3.99), and (3.100), one can show that Eq. (3.104)
remains valid if ¢, is replaced by ¢o or ¢3. Thus, for any (v,0) € ¥, we have

F(v,0,) =0, (=1,2,3 (3.105)
where '
F(v,0,9) 1 sin? ¢ — 20%(1 — cos 0)(1 + cos ¢) — vsin fsin ¢ (3.106)
—o<rv< 40, << —r<p< 7w '
Eq. (3.106) implies that, for all (v,6) with —co < v < 400 and —7 < § < 7, we have
F(_Va07¢) = F(Vv _95¢) = F(V595_¢) (3107)
F(£1/2,0,+0) = F(£1/2,0,560/2) = F(£1/2,0,7 F60/2) = 0 (3.108)
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and
F(v,0,7)=0 (3.109)

Egs. (3.105) and (3.107) are consistent with Eqs. (3.14) and (3.31) while Eq. (3.108) is consistent with the
special results Egs. (3.62) and (3.63). On the other hand, because (i) sinm = 14+cos7 = 0, and (ii) Eq. (3.104)
is obtained from a subtraction of two expressions which result from multiplying Eqs. (3.95) and (3.96) with
(14+cos ¢1) and sin ¢1, respectively, the fact that Eq. (3.109) is true for all (v, 0), —co < v < +00; —7 < 6§ < 7.
is an artificial result accidently introduced in the derivation of Eq. (3.105).
According to the above discussions, given any (v,6) € ¥, the phase angle ¢ of any root of Eq. (3.17)
must satisfy
F(v,0,¢) =0, —co<v<—too; <<, < Pp< W (3.110)

Recall that the analytical amplification factor is given by e~*?. Thus it is expected that ¢ = —v6 should
be a good approximated solution to Eq. (3.110) when |6] is small (i.e., when the solution Eq. (3.65) has a
very small variation over the spatial interval Az and thus it is closely approximated by a discrete solution).
In fact, with the aid of Eq. (3.106) and the Taylor’s expansions

3 x° 27 2?2zt 8

NP = — e e — 9 d =1—- =4+ = - —— 8 A11
sine =z 6+120 5O4O+O(:1:) and cosz 2+24 720+O(:c) (3.111)

one has

1296

F(v,0,—10) = sin®(v0) — 2% (1 —cos 0)[1 +cos(v0)] 4+ v sin O sin(vh) = (402 —1)(v? —1) 360

+0(6®%) (3.112)

Because 402 — 1 = 0 & |v| = 1/2, the above result is consistent with the fact that F(+1/2,0,F6/2) = 0,
which was presented as part of Eq. (3.108).
Given any (v,0), Newton’s iterative procedure for obtaining a root ¢ of Eq. (3.110) is defined by

F(v,0,¢0™)
A i n=0,1,2,3,... 3.113
R AN (3:419)
where (i) ¢" is the nth iterative value of ¢ and (ii)
Fy(v,0,9) def OF(v.9,¢) = sin(2¢) + 20%(1 — cos 6) sin ¢ — v sin @ cos ¢ (3.114)

o

For a given (v,0) € U, the phase angle ¢ of any o(v, ) must satisfy Eq. (3.110). Moreover, according
to Eq. (3.103), 0 < |¢| < wif v # 0 and 0 < |] < w. As a preliminary to the proof to be given in Sec. 3.7,

the equation F'(v, 0, ¢) = 0 will be cast into a cubic equation assuming
v#0 and 0<|0|,|¢| <m (3.115)

As a result of Eq. (3.115), we have

1+cosp#0 and vsinf #0 (3.116)

With the aid of Egs. (3.106) and (3.116), Eq. (3.110) implies that

1 —cos¢ — 2v%(1 — cos ) sin ¢

— = : A1
v Throosg ~ 0 v#FH0<bLlgl<nm (3.117)
Because
2tan?(¢/2) sin ¢ 1 —cos®
— = = —_— = A1
1—coso T+ tan’(6/2)) 1+ cosd tan(¢/2), and g tan(6/2), 0<16|,|¢| <7 (3.118)
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Eq. (3.117)

™ +2 [vtan(0/2) —

2 — .
Send | T + 7+ 2vtan(6/2) =0, v#£0; 0< 0| <7 (3.119)

where 7 is related to ¢ through the one-to-one relation

7 < tan(¢/2), 0<|¢|<m (3.120)

It has been shown that, for any (v,0) € V,, each real phase angle ¢;(v,0), £ = 1,2,3 must satisfy
Eq. (3.119) through the one-to-one relation 7 = tan [¢¢(v, 8)/2]. As such, assuming (i) (v,0) € ¥, and (ii)
de(v,0), £ = 1,2,3 are distinct, Theorem 4 implies that the roots of Eq. (3.119) are also real and distinct,
and can be indexed such that

Te(v,0) = tan [¢e(v,0)/2], £=1,2,3 (3.121)

However, for the case in which ¢4 (v, 0), £ = 1,2,3, are not distinct, two or three of the phase angles that share
a common value may be linked with a real root of Eq. (3.119) through a relation in the form of Eq. (3.120).
As such there is a possibility that one or two roots of Eq. (3.119) may not be linked with any ¢¢(v, ) in the
form of Eq. (3.120) or any way whatsoever. In the following, this possibility will be ruled out. In fact, we
will prove the following proposition:

Proposition 2. Let (i) v # 0 and 0 < |8 < 7, and (ii) 7¢(v,0) and ¢¢(v,0), £ = 1,2, 3, be defined using
Egs. (3.31)-(3.33). Then (v,0) € U,, i.e., Eq. (3.83) is true, if and only if the roots of Eq. (3.119) are all
real. Moreover, these real roots can be indexed such that they and the real phase angles ¢,(v,0), £ = 1,2, 3,
are related through Eq. (3.121).

Proof. Let 7¢(v,0), £ = 1,2,3, denote the roots of Eq. (3.119) where (v, 0) is only subjected to the
condition v # 0 and 0 < || < 7. Then, no matter how these roots are assigned the indices £ = 1,2, 3, we
have

™+ 2 |vtan(6/2) —

g 2+ 2wtan(0/2) = (1 — ) (T — 1) (T —73), v#0; 0< |0 <7 (3.122)
vsin

Hereafter, for simplicity, the arguments v and 6 may be dropped from 74(v, #) and tan [¢,(v,0)/2], £ = 1,2, 3.
Eq. (3.122) <

T1ToTs = —2vtan(0/2), v£0;,0<0 < (3.123)
T1T2 + ToT3 + 7371 = 1, v#0; 0<|0l <7 (3.124)

and
T1+ T2+ 73 =2 ﬁfytan(ﬁﬂ) , v£0;0<|f <7 (3.125)

Because vtan(f/2) # 0 if v # 0 and 0 < |0] < 7, Eq. (3.123) implies that
T1 75 0, T2 75 O, and 73 75 0, (3126)

Moreover, it follows from Egs. (3.123)—(3.125) that the roots of Eq. (3.119) are all real and can be indexed
such that they are related to ¢.(v,0), £ = 1,2,3, through Eq. (3.121), if and only if

tan(¢1/2) tan(¢2/2) tan(¢s/2) = —2v tan(0/2), v#0,0<0<m (3.127)

tan(¢y/2) tan(pa/2) + tan(g2/2) tan(ps/2) + tan(¢s/2) tan(¢y/2) =1, v#0; 0< |0 <7 (3.128)
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and

tan(ér/2) + tan(es/2) + tan(ds/2) = 2 | — S -vtan(@/2)|,  v£0 0< 0 <x (3.129)

Vs

In the following, first we will show that Eq. (3.119) has only real roots and they can be specified by Eq. (3.121),
i.e., Egs. (3.127)—(3.129) are true, if (v,0) € U,,.

As a preliminary, first note that Eq. (3.83) < Eqgs. (3.84) and (3.86) (a conclusion reached following
Eq. (3.88)). Next, because of Eq. (3.33), Eq. (3.84) < either (i) Eq. (3.89), or (ii)

01+ P2+ 3 ==E7 (3.130)

It was shown earlier that Eq. (3.89) can occur only for the case Eq. (3.80). Because this case is ruled out
by the condition 0 < || < 7, Eq. (3.84) < Eq. (3.130) if 0 < |f] < w. Moreover, assuming Eq. (3.130), one
can see easily that Eq. (3.86) < Eq. (3.94) < Egs. (3.95) and (3.96). Thus one concludes that Eq. (3.83) <
Eqgs. (3.95), (3.96), and (3.130) if 0 < |0| < . Note that Egs. (3.97)-(3.100) are trivial results of Eqs. (3.95),
(3.96), and (3.130).

Let (v,0) € ¥,. Then according to Egs. (3.82) and (3.103), and the above discussions, we have (i)
Egs. (3.95), and (3.96), and (ii)

U#O, 0<|9|<7T, 0<|¢1|,|¢2|,|¢3|<7T, and ¢1+ do+ 3 =+ (3131)

To prove Eq. (3.128), note that the last two conditions given in Eq. (3.131) imply that

tan(ps/2) = tan <j:g _# ;(‘52) (3.132)
(Note: tan(¢s/2) is undefined when ¢3 = +7, 4371, £57,.... However these undefined cases are ruled out
by the condition 0 < |¢3| < 7.) Eq. (3.128) follows immediately from Eq. (3.132) and the relation
T $1+ ¢ b1+ @2 1 — tan(¢1/2) tan(¢2/2)
t +—— — | =cot = 1
o ( 2 2 ) “ ( 2 tan(¢1/2) + tan(ga/2) (8.133)

(Note: Because of the last two conditions given in Eq. (3.131), all terms and expressions which appear in
Eq. (3.133) is well defined.)

To prove Eqs. (3.127) and (3.129), note that, because of Eq. (3.131), the term 2vsin# on the right side
of Eq. (3.96) is nonzero. Thus the expression on the left side is also nonzero, i.e.,

sin ¢1 + sin ¢g + sin(¢1 + ¢2) # 0 (3.134)

As such Eq. (3.96) &
4 2
= 3.135
sin @1 + sin ¢ + sin(¢1 + ¢2)  vsind ( )
if Eq. (3.131) is assumed. Also by dividing Eq. (3.95) over (3.96), and using the last identity presented in
Eq. (3.118), one has

cos ¢1 + cos 2 — cos(Py + ¢a) — 1
sin ¢1 + sin g2 + sin(¢p1 + ¢2)

Adding Eq. (3.135) to Eq. (3.136), we have

= —2vtan(6/2) (3.136)

oS ¢1 4 cos Py — cos(p1 + ¢2) +3 5 1
sin ¢y + sin gg +sin(¢y + ¢2) |vsinf

—vtan(6/2) (3.137)
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Furthermore, by assuming Eqgs. (3.130) and (3.134), it is shown in Appendix B that

cos 1 + cos P — cos(¢p1 + ¢2) — 1
sin gf)l =+ sin ¢2 =+ sin(d)l =+ ¢2)

= tan(¢1/2) tan(¢2/2) tan(¢s/2) (3.138)

and
cos ¢1 + cos o — cos(P1 + ¢2) + 3

sin g1 + sin ¢z + sin(¢1 + ¢2)

Egs. (3.127) and (3.129) now follow from Egs. (3.136)—(3.139). Thus we have shown that the roots of
Eq. (3.119) are the real roots specified by Eq. (3.121), if (v, 6)¥,.

Next consider any (v,6) such that (i) v # 0 and 0 < |6] < 7; and (ii) the roots of Eq. (3.119) are all
real. In the following we will complete the proof by showing that, for such a (v, ), (i) Eq. (3.83) is true, i.e.,
(v,0) € ¥,; and (ii) the real roots of Eq. (3.119) can be indexed such that they and the real phase angles
de(v,0), £ =1,2,3, are related by Eq. (3.121).

Let the real roots be denoted by 74(v,8), £ = 1,2,3. Then we have Egs. (3.123)—(3.126). Because of
Eq. (3.126), for each 7¢(v,0), there exists one and only one ¢, (v, #) such that

= tan(¢1/2) + tan(pz2/2) + tan(¢s/2) (3.139)

0< |<,01(I/,9)|7|<,02(V,9)|,|(p3(1/,9)| <7 (3'140)

and
Te(v, 0) = tan[pe(v,0)/2], =1,2,3 (3.141)

Substituting Eq. (3.141) into Eq. (3.123)—(3.125) and dropping the arguments v and 6, we have
tan(p1/2) tan(ps/2) tan(ps/2) = —2v tan(6/2), v#0; 0< 0| < (3.142)
tan(p1/2) tan(p2/2) + tan(p2/2) tan(ps/2) + tan(es/2) tan(p1 /2) = 1, v#0; 0<|0 <7 (3.143)

and

1
tan(p1/2) + tan(pa/2) + tan(ps/2) = 2 g

—vtan(0/2)], v#0; 0<0 <m (3.144)

Because of Eq. (3.140), at least two of ¢1, @2, and 3 must both be positive or negative. Let o1 and
2 be both positive or negative, i.e., @192 > 0. Then Eq. (3.140) also implies that tan(p;/2) tan(ps/2) > 0.
In turn, we have

1 +92#0 (3.145)

and
tan(p1/2) + tan(pa/2) £ 0 (3.146)

(Note: Recall that (a+b)? = a® +b*+2ab. Thus (a+b)% > 0, i.e., a+b # 0, if ab > 0.). Next, by combining
Egs. (3.140) and (3.145), one has

0< ’W <r (3.147)
and therefore n
sin(%) £0 (3.148)
By using Eq. (3.140) and (3.148), one can show easily that
1-t 2)t 2
ot (sol + m) _ 1 —tan(p1/2) tan(ps /2) (3.149)
2 tan(¢1/2) + tan(p2/2)
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Moreover, with the aid of Eq. (3.146), Eq. (3.143) implies that

1 — tan(p1 /2) tan(ps/2)

tan 2) = 3.150
(02/2) = TG /2) + tan(pa/2) (8.150)
Combining Eqs. (3.149) and (3.150), one arrives at the conclusion that
tan(ps/2) = cot (%) (3.151)
Eq. (3.151) implies that ¢1, @2, and p3 must satisfy one of the following conditions:

©1+ @2 + p3 = mm, m==+1,£3,45,... (3.152)

Because 0 < |p1 + p2 + @3] < 37 is required by Eq. (3.140), Eq. (3.152) now implies that
o1+ 2+ @3 ==Em (3.153)

Note that, using similar arguments, we will arrive at the same conclusion Eq. (3.153) if, instead of assuming
P12 > 0 at the beginning, we assume @23 > 0 or p3p; > 0.

To proceed, note that: (i) by combining Egs. (3.140) and (3.153) with the assumptions v # 0 and
0 < |0] < 7, we have

v#0, 0<16] <, 0 < |e1l, lp2l, o3| <, and @1+ @2+ @3 =E7 (3.154)
and (ii)
sin 1 + sin 2 + sin(p; + @2) = 4 cos(p1/2) cos(p2/2) cos(ps/2) (3.155)

is a result of Eq. (3.153) (see the proof given in Appendix B). By combining Eq. (3.155) with a result of
Eq. (3.140), i.e.,
cos(pe/2) > 0, £=1,2,3 (3.156)

one concludes that
sin @1 + sin o + sin(pr + 2) # 0 (3.157)

is a result of Eq. (3.140) and (3.153). Using arguments similar to those used in the proof of Egs. (3.138) and
(3.139) (see Appendix B), one can prove that

€os 1 + cos 2 — cos(p1 + ¢2) — 1
sin @1 + sin s + sin(p1 + p2)

= tan(y1/2) tan(p2/2) tan(ps/2) (3.158)

and
cos 1 + cos p2 — cos(p1 + ¢2) + 3

sin 1 + sin o + sin(p; + 2)

follows from Eqgs. (3.153) and (3.157).
Eqs. (3.142), (3.144), (3.158), and (3.159) now imply that

= tan(¢1/2) + tan(p2/2) + tan(ps/2) (3.159)

cos @1 + €os pa — cos(p1 + 2) — 1
sin 1 + sin 92 + sin(p; + 2)

= —2vtan(6/2) (3.160)

and
cos 1 + cos 2 — cos(p1 + v2) + 3 _9 1

sin 1 + sin g + sin(p; + @2) v sin 6

—vtan(6/2) (3.161)
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By subtracting Eq. (3.160) from Eq. (3.161), and then taking the reciprocals of the expressions on the both
sides of the resulting equation, one has

sin 1 + sin 2 + sin(p; + @2) = 2vsiné (3.162)

Moreover, by substituting Eq. (3.162) into Eq. (3.160) and using the last identity presented in Eq. (3.118),
one has
cos @1 4 cos g — cos(py + p2) — 1 = —41%(1 — cos ) (3.163)

At this juncture, note that Eqgs. (3.153), (3.154), (3.162), (3.163) will become Egs. (3.130), (3.131), (3.96),
and (3.95), respectively, if the symbols ¢1, @2, and @3 in the former equations are replaced by ¢1, ¢2, and
¢3, respectively.

Next, by using Eq. (3.153), (3.162), and (3.163), one has

ei(<p1+<p2+903) =1 (3164)

and
e 4 etz 4 s = 1 — 41%(1 — cos f) + 2ivsin (3.165)

Because Eq. (3.85) is a result of Eqgs. (3.84) and (3.86), one can see that
etlertez) o pilertes) o pileates) — 1 4 41%(1 — cosf) + 2ivsinf (3.166)

is a result of Egs. (3.164) and (3.165). By comparing Eqs. (3.164)—(3.166) with Eq. (3.22), one concludes
that the roots of Eq. (3.17) are e, £ = 1,2, 3. Thus, according to Eqs. (3.31)—(3.33) and (3.140), Eq. (3.83)

is true, and one can choose ¢y def e, £ =1,2,3. As such, it has been shown that, for any (v, 8) such that (i)
v #0and 0 < |0] < m; and (ii) the roots of Eq. (3.119) are all real, Eq. (3.83) is true and, through a proper
indexing, the real roots 74(v,0), £ = 1,2, 3, of Eq. (3.119) and the real phase angle ¢¢(v,0), £ = 1,2, 3, of the
roots to Eq. (3.17) are related through Eq. (3.121). Thus the proof for Proposition 2 is completed. QED.

According to Egs. (3.62) and (3.63), for the special cases v = +1/2, (i) Eq. (3.83) is true in the domain
—7m < 0 < ; and (ii) in the domain 0 < |f] < 7, the phase angles ¢y, £ = 1,2,3 (which are subjected to the
condition Eq. (3.33)), can be chosen as

t(r—0/2) ifr>0>0

F(r+6/2) if0>0>—7’ v==+1/2; 0< [0l <7  (3.167)

¢1 =40, ¢2=7F0/2, and ¢3= {

(Note: Hereafter, for Eq. (3.167) and similar equations associated with the special cases v = +1/2, each
equation is valid when the upper (lower) signs are taken uniformly.) According to Eq. (3.121) and (3.167),
the roots to Eq. (3.119) for the current special cases are

71 = *tan(6/2), 12 = Ftan(d/4), and 73 = Lcot(0/4) v==1/2; 0< |0 <7 (3.168)

In fact, by using the relations

— tan(0/2) + tan(6/4) — cot(8/4) — tan(8/2) — ie 0<8] < (3.169)

sin
and
tan(0/2) [cot(6/4) — tan(6/4)] = 2, o< |0 <m (3.170)
(which are proved in Appendix B), Eq. (3.168) implies that

4
T+ T +13 =% [s,—e—tan(ﬁﬂ)} , TTe+Tem3+71371 =1, and 71727'3:$tan(9/2) (3171)
111
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In other words, 7¢, £ = 1,2, 3, given in Eq. (3.168) indeed satisfy Egs. (3.123)—(3.125) for the special cases
v=+1/2.
According to Eq. (3.168), we have (i)

To#7 and To # T3, v==1/2; 0< |0 <7 (3.172)
(i)
nAm if v==+1/2, 0< 0] <, and |0] £ 27/3 (3.173)
and (iii)
=7 if v==+1/2and 0] =27/3 (3.174)

As a result, for the special cases v = £1/2, Eq. (3.119) has: (i) three distinct real roots if 0 < || < 7 and
|0] # 27/3; and (ii) one doubt real root (i.e., 71 = 73) and one simple real root (i.e., 72) if |8] = 27/3.

3.7. Proof for Proposition 1
As a preliminary, we introduce the following well-known theorem:

Theorem 5. Consider the cubic equation
™ 4+ apm® + a17 +ap =0 (3.175)
where ag, a1, and as are real coefficients. Let

def a1 (a2)? def @102 — 3ag  (a2)? def 3 o
= = — d D= 3.176
3 9 6 o7 M ¢ (3.176)

Then Eq. (3.175) has: (i) one real root and a pair of complex conjugate roots if D > 0; (ii) three real roots
and at least two are equal if D = 0; and (iii) three distinct real roots if D < 0.
For each (v, 0), Eq. (3.119) is a special case of Eq. (3.175) with

1
vsin 6

ap & 2vtan(0/2), a; 9 and a2 {Vtan(9/2) - ] , v#00< |0 < (3.177)

Thus, for each (v, 0), the discriminant D associated with Eq. (3.119) has the form

D(v.0) = {5~ 5 [vtan(o/2) - ——]° g [evtan(0/2) + ——] + = vian(o/2) - ——]’ 2
SR T i Vsin 0 37 vsingl o7 VM Vsing
1 4 1 2 16 1 4
T o7 ﬁ[utan(9/2) B usinG} * g[ytan(9/2) B VsinH}
1 1 2 16 1 1 3
—|2v tan(6/2 — |2v tan(6/2 tan(6/2) —
+9{ vtan(0/2) + usinﬁ} +81[ vtan(9/2) + VsinH} [V an(6/2) VsinH}
B 1 16tan(9/2)] , 1 [, , 48tan(9/2)  20tan(6/2)
© 2Ty2sin? 6 sin 6 27 sin’ sin 6
812 tan?(6/2) 6tan(6/2) 604
+ o7 [1 ] :|+ o7 tan®(6/2), v#0; 0< |0l <m
(3.178)
Let
s 42 (3.179)
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Then Eq. (3.178) and the relation

tan(6/2)  sin(0/2)/cos(6/2) 1
Sn0  2sm(8/2)cos(@2) ~ 2°°¢ (0/2): 0<lfl<m (3-180)
imply that
.2
(s, 0) 4 278D 0) s 0 [tan®(6/2) sin? 0] * + L an?(6/2) sin? 6[1 — 3sec*(6/2)] s>
16 2
(3.181)
+ % sin® 0[1 + 12sec?(6/2) + 10sec®(0/2)]s — % [1+8sec?(0/2)], s>0; 0<|0] <m
For the special cases v = +1/2, i.e., s = 1/4, n(s,0) reduces to
1
n(1/4,0) = —{tan4(9/2) sin® 6 + 2 tan®(0/2) sin® 01 — 3sec(0/2)]
64
(3.182)
+sin20[1 + 12sec*(6/2) + 10sec®(6/2)] — 4[1 + 8sec?(0/2)] } 0< ol <n
By using trigonometric relations such as
tan?(0/2) = sec?(6/2) —1 and sec®(6/2)sin? 0 = 4sin*(6/2) (3.183)
Eq. (3.182) can be simplified as
1 [4cos?(6/2) — 117

Because (i) 10| < m & [0/2] < ©/2; (i) 4cos?(8/2) = 1 & cos(0/2) = 1/2 if |6/2] < m/2; and (iii)
cos(0/2) =1/2 < |0/2| = /3 if |#/2]| < w/2, Eq.(3.184) implies that

<0 if0<|f <mand]|l 271/3
77(1/4,9)_{_0 if\@\z‘Q‘w/Z& 101 27/ (3.185)

With the aid of Eq. (3.179) and the definition of (s, ) given in Eq. (3.181), Eq. (3.185) and Theorem 5
imply that, for the case with v = £1/2, Eq. (3.119) has: (i) three distinct real roots if 0 < 8] < 7 and
|0] # 27/3; and (ii) three real roots and at least two are equal if || = 27/3. This result is consistent with
the conclusion reached following Eq. (3.174).

Let
A(0) 1 3tan*(0/2) sin? 0, 0<|0]<m (3.186)
B(6) < tan®(0/2) sin® 0 [1 — 3sec®(6/2)] , 0< 16 <m (3.187)
and
(o) % sin? 0 [1 + 12sec*(6/2) + 10sec?(0/2)] , 0<0l <= (3.188)
Then (i)
A#) >0, B(9) <0, and C(8) >0, 0<|0 < (3.189)
(i)
In(s, ) B(9) 12, 4A(0)C(9) — [B(9)] .
5 A(0)s*+B(0)s+C(0) = A(G){ {s 2A(0)} + AD) }, s>0; 0< 6] <m (3.190)
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and (iii) because sec?(6/2) > 1,0 < |0| < m,
4A(0)C(0) — [B(0))” = tan*(0/2) sin® 0 [(27/2) sec?(0/2) — (1/4)] > 0, 0<0] < (3.191)
Egs. (3.189)—(3.191) now imply that

aon(s,0)
0s

>0, s>0;0< 0 <m (3.192)

Combining Eqs. (3.185) and (3.192), one arrives at the conclusion that (i)
n(s,0) <0 if 0<s<l/4andO<|f<m (3.193)

and (ii)
n(s,0) >0 if s>1/4and |0 =2n/3 (3.194)

By using Egs. (3.185), (3.193), (3.179), and (3.181), one concludes that

<0 if0<y<1/2and0< |0 <7
D(v,0){ <0 if |y =1/2,0< 0] <, and |0] # 27/3 (3.195)
=0 if|y|=1/2and |f| =27/3

With the aid of Theorem 5, Eq. (3.195) infers that the roots of Eq. (3.119) are real and distinct if (i)
0<|v]<1/2and 0 < |0] <, and also if (ii) |v| = 1/2,0 < |0] < 7, and |0]| # 27 /3. Moreover, it infers that
these roots are real and at least two of them are equal if |v| = 1/2 and |0| = 27/3. By using Proposition 2,
in turn, one concludes that o¢(v,0), £ = 1,2, 3, are distinct and of unit magnitude if (i) 0 < |v| < 1/2 and
0 < |0] < m, and also if (ii) |v| = 1/2,0 < |0] < 7, and |0| # 27/3. Moreover, one concludes that o4(v, ),
¢ =1,2,3, are of unit magnitude and at least two of them are equal if |v| = 1/2 and |0| = 27/3.

Proposition 1(a) now follows from the above conclusions and several results obtained in Sec. 3.5, i.e.,
(i) the roots of Eq. (3.17) are 1, 1, and —1 if v = 0 or § = 0; and (ii) the roots of Eq. (3.17) are —1 and
two distinct complex conjugate numbers of unit magnitude if 0 < [v| < 1/v/2 and 6 = 7 (see Eq. (3.77) and
(3.79)). On the other hand, Proposition 1(b) is a trivial result of (i) Egs. (3.194), (3.181), and (3.179); (ii)
Theorem 5; and (iii) Proposition 2. Thus the proof for Proposition 1 is completed. QED.

In Sec. 3.8, we introduce and prove Proposition 3, which along with the results presented in Sec. 3.5,
defines the sets of (v,0) for which Eq. (3.17), respectively, has (i) three distinct roots of unit magnitude,
(ii) one double root of unit magnitude and one simple root of unit magnitude, (iii) one triple root of unit
magnitude, and (iv) at least one root not of unit magnitude.

3.8. Proposition 3

Note that, for any given 6 with 0 < |8] < =, (i) Egs. (3.192) and (3.193) imply that (s, 8) is a strictly
monotonically increasing function of s in the domain s > 0 and it becomes negative uniformly in the domain
0 < s < 1/4; and (ii) the coefficient tan?(6/2)sin?# of the third-order term in s in the expression on the
right side of Eq. (3.181) is positive and thus 7(s,0) — 400 as s — 400. The above observations coupled
with Eq. (3.179) imply that, for a given 6 with 0 < |f] < 7, (i) there is one and only one positive value v*(9)
such that

<0 if [v] < v*(6)
n(?,0)¢ =0 if v = v*(0) v#£0 0<0) < (3.196)
>0 if [v| > v*(0)

and (ii)

V() { >1/2 if0< 0] < and |f| #27/3 (3.197)

By using (i) Egs. (3.196) and (3.197), (ii) Egs. (3.179) and (3.181), (iii) Theorem 5, (iv) Proposition 2,
(v) the relation o1 (v, 0)o2(v, 8)o3(v,0) = —1 (see Eq. (3.22)), and (vi) the fact that the only possible triple
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root of unit magnitude for Eq. (3.17) is —1 and it occurs only for the case Eq. (3.80) (proved in Sec. 3.6),
one now arrives at Proposition 3:

Proposition 3. For a given § with 0 < |0| < 7, Eq. (3.17) has: (i) three distinct roots of unit magnitude
if 0 < |v| < v*(9); (ii) one double root of unit magnitude and a simple root of unit magnitude if |v| = v*();
and (iii) at least one root with its magnitude > 1 if |v| > v*(9).

An immediate result of Eq. (3.197) and Proposition 3 is the following corollary:

Corollary to Proposition 3. For a given 6 with 0 < |§] < 7, Eq. (3.17) has: (i) three distinct roots
of unit magnitude if (a) 0 < |v| < 1/2, and also if (b) |v| = 1/2 and |0] # 27/3; (ii) one double root of unit
magnitude and a simple root of unit magnitude if |v| = 1/2 and |0| = 27/3; and (iii) at least one root with
its magnitude > 1 if [v| > 1/2 and |0| = 27/3.

With the above preliminaries, a rigorous study of the stability conditions of the a(3) scheme will be
given in Sec. 3.9.

3.9. Stability condition of the a(3) scheme
Because of Eq. (3.1) and a reason presented right before Sec. 3.1, we have the following definition:

Definition 1. The a(3) scheme is said to be stable with respect to a given v if, for every 0, —m < 6 <,
every element of the matrix [G(v, 8)]™ remains bounded as the positive integer m — +o0o. On the other
hand, the scheme is said to be unstable with respect to a given v if, for any 8, —m < 6 < 7, at least one
element of the matrix [G(v, §)]™ becomes unbounded as m — +oo.

To study stability of the a(3) scheme, in the following we introduce needed matrix preliminaries. First
note that an NV x N matrix has at least one eigenvector and at most N linearly independent eigenvectors
[76]. Related to this subject, we have Definition 2 [76]:

Definition 2. An N x N matrix A is said to be nondefective if it admits N linearly independent
eigenvectors. On the other hand, A is defective if it admits less than N linearly independent eigenvectors.

Another definition we need later is Definition 3:

Definition 3. Let A\g, £ =1,2,3,..., N, be the eigenvalues (which may or may not coincide with one
another) of an N x N matrix A. Then the spectral radius of A is

ef N
p(A) = max{ ) (3.198)
Next we have the following well-established theorem [76]:

Theorem 6. For any N x N matrix, (i) each distinct eigenvalue of multiplicity m is associated with
at least one eigenvector and at most m linear independent eigenvectors; and (ii) two eigenvectors associated
with two different eigenvalues are linearly independent.

By using Definition 2 along with Theorems 4 and 6, we have Theorem 7, i.e.,

Theorem 7. An N x N matrix A is defective if and only if A has at least one eigenvalue which satisfies
the following properties: (i) its multiplicity m is greater than one; and (ii) the number of linearly independent
eigenvectors associated with this eigenvalue is less than m.

Moreover, with the aid of Theorems 2 and 3, one can easily prove Theorem 8:

Theorem 8. Let (i) A be an N x N matrix, (ii) A be the complex conjugate of A, and (iii) B be a
matrix similar to A (i.e., there exist a nonsingular N x N matrix S such that B = S~1AS). Then A is
defective (nondefective) < A is defective (nondefective) < B is defective (nondefective).

An immediate result of Theorem 7 is Lemma 3, i.e.,
Lemma 3. An N x N diagonal matrix is nondefective.

Next we will prove Theorem 9, i.e.,
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Theorem 9. Let A be a 3 x 3 matrix. Then every element of A™ remains bounded as the positive

integer m — +oo if and only if
(A) { <1 if A is nondefective

Nl
<1 if A is defective (3.199)

Proof. Let A be nondefective. Then the Jordan canonical form theorem [76] implies that there is a
nonsingular 3 x 3 matrix S so that A = SA¢S~! where

A0 0
A lo x o (3.200)
0 0 X

with A1, A2, and A3 being the eigenvalues of A. Because A = SApS~! implies that A™ = S(Ag)™S~1, every
element of A remains bounded as m — 400 < every element of Ay remain bounded as m — +o00. As such,
for the nondefective case, Theorem 9 now follow from Eq. (3.198) and the fact that (i)

(A)™ 0 0
Ao)"=| 0 ()™ 0 m=1,2,3... (3.201)
0 0 (A3)™
and (ii) for a complex number ¢
o<1 ifld <1
mlil}rloo ™| {: +oo if || >1 (3.202)

Next let A be defective. Then, according to Theorems 4, 6, and 7, it must belong to one of the following
mutually exclusive cases: (a) it has an eigenvalue A\ of multiplicity m = 3 and it admits one and only one
linearly independent eigenvector; (b) it has an eigenvalue A of m = 3 and it admits two and only two linearly
independent eigenvectors; and (c) it has an eigenvalue A\; of m = 1 and another eigenvalue Ay of m = 2
such that there is one and only one linearly independent eigenvectors associated with the eigenvalue \s.
According to the Jordan canonical form theorem, for each case, there exists a nonsingular 3 x 3 matrix S
such that A = SAS™! where (i) for case (a),

o O >
an)
> =

(ii) for case (b),

def

A=Ay < (3.204)

o O
o > O
[y

1 0
A=A Y A (3.203)

and (iii) for case (c),

A0 0
A=A 0 A 1 (3.205)
0 0 X

By induction, one can prove easily the following relations:

AT AT Im(m — 1) /2] 2

A)™=1| 0 ™ mA™—1 m=1,2,3,... (3.206)
0 0 A™
A0 0
(A)" =1 0 A mam! m=1,2,3,... (3.207)
0 0 AT
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and

(AM)™ 0 0
(As)™ = 0 A2)™ m(Ay)m ! m=1,2,3,... (3.208)
0 0 (A2)™

Because A = SAS™! implies that A™ = S(A)™S~!, every element of A remains bounded as m — +o0o <
every element of A remain bounded as m — +o00. As such, for the defective case, Theorem 9 now follows
from (i) Egs. (3.198) and (3.203)—(3.208), and (ii) the fact that Eq. (3.202) and the relations

0 ifld<1

3 m—1| __
m1—1>r-Ii-1<>o fme™ ™) = {+oo if | > 1 (3.209)
and ¥
. _ m—2] 0 if [e] <1
mLHEoo [[m(m —1)/2]c¢™ ™% = {—i—oo if o] > 1 (3.210)

are true for any complex number c¢. QED.
An immediate result of Definition 1 and Theorem 9 is Lemma 4:
Lemma 4 The a(3) scheme is stable with respect to a given v if and only if, for this v and every 6,
—r <0<,
<1 if G(v,0) is nondefective

p(G(¥.9)) { <1 if G(v,0) is defective —r<fsm (3.211)

Because o4(v,0), £ = 1,2,3, are the eigenvalues of G(v,#), with the aid of Proposition 1(b) (or part
(iii) of Corollary to Proposition 3) and Eq. (3.198), Lemma 4 implies that the a(3) scheme is unstable if
|v| > 1/2. In the following, we will prove Proposition 4, i.e.,

Proposition 4. The a(3) scheme (i) is stable if and only if
| <1/2 (3.212)

(ii) is neutrally stable for any v satisfying Eq. (3.212); and (iii) is linearly unstable (in a sense to be defined)
if lv] =1/2.

As a preliminary, first we will study defectiveness of G(v,0) over several domains of (v,60). We begin
with Lemma 5:

Lemma 5. (i) G(v,0) is nondefective for any v; (ii) G(v,7) is defective if and only if |v| = 1/+/2; and
(iii) G(0,0), —m < @ < =, is nondefective.

Proof. Because

1 0 0
Gw,0)=(0 -1 0 (3.213)
0 0 1

Part (i) follows from Lemma 3 and Eq. (3.213) immediately.
Next, by using Eq. (3.76), one concludes that G(v, 7) has an eigenvalue with multiplicity m > 1 if and
only if either (i) the two eigenvalues given in Eq. (3.77) are equal, i.e.,

VA2 -1)=0 (3.214)
or (ii) the eigenvalue —1 is equal to one of those given in Eq. (3.77), i.e.,
1—-20% = /202202 —1) or 1-—2v2=—/202(202 1) (3.215)
Eq. (3.215) implies that (1 — 21%)? = 20%(2v? — 1) which <

202 =1 (3.216)
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Combining Eqs. (3.76), (3.214) and (3.216), one concludes that: (i) G(v,7) has an eigenvalue with m > 1 if
and only if either v = 0 or v = 4+1/+/2; (ii) the eigenvalue of G(0,7) with m = 2 is 1; and (iii) the eigenvalue
of G(+1/v/2,7) with m = 3 is —1. Also it can be show easily that (iv)

0 -2
1 and 0 (3.217)
0 3
are two linearly independent eigenvectors of
3 0 4/3
GOo,m=| 0 1 0 (3.218)
-6 0 -3

associated with the eigenvalue 1. By using the above results (i), (ii), and (iv), Theorem 7 implies that G (v, 7)
is nondefective if |v| # 1/4/2. To complete the proof of part (ii) of Lemma 5, we need only to show that
G(£1/v/2,7) is defective.

To proceed, note that

3 F2v2 8/3
G(£1/vV2,m) = | £2v2 -1  +4v2/3 (3.219)
-6 +3v2 -5
Let Z = (1,29, x3)" be an eigenvector of G(£1/v/2, ) with the eigenvalue —1, i.e., (i) & # 0 and (ii)
G(£1/V2,7)i = & (3.220)
By using Eq. (3.219), Eq. (3.220) <
2o =0 and 3z;+223=0 (3.221)

Thus any eigenvector of G(41/+/2,7) associated with the eigenvalue —1 must be in the form

cl o (3.222)
-3

where c is a complex number # 0. In other words, there is one and only one linearly independent eigenvector
of G(£1/v/2,m) associated with the eigenvalue —1. Because m = 3 for this eigenvalue, Theorem 7 implies
that G(41/v/2, ) is defective. Thus the proof of part (ii) is completed.

Next, according to Eq. (3.75), for the matrix

2 —cost isinf  (2/3)(1 — cosb)
G(0,0) = isin 6 —cosf (2/3)isinf —r<f<m (3.223)
3(cosf —1) —3isind 2cosf —1

the eigenvalue with m = 2 is 1 while the eigenvalue with m =1 is —1. On the other hand,

1 0
i(L—cos®) [ 4 | 2i(1—cost) 0< ol <n (3.224)
sin 6 sin 0
0 3
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are two linearly independent eigenvectors of G(0, 6) associated with the eigenvalue 1 if 0 < |0] < 7. By using
the above results, part (iii) of Lemma 5 now follows from Theorem 7 and parts (i) and (ii) of Lemma 5.
QED

Next, defectiveness of the matrix G(v, 6) when |v| = 1/2 and |f| = 27/3 will be established in Lemma
6, i.e.,

Lemma 6. When |v| = 1/2 and |f] = 27/3, G(v,0) is defective, and it has an eigenvalue with
multiplicity m = 2 and another eigenvalue with m = 1.

Proof. Consider the case v = 1/2 and 6 = 27/3. Eq. (3.62) implies that
00(271/3) = o_(21/3) = —(1 —iV3)/2 and o4 (27/3) = (1 —iV3)/2 (3.225)

i.e., the eigenvalue of G(1/2,27/3) with m = 2 is —(1—iv/3) /2 while the eigenvalue with m = 1is (1—iv/3)/2.
Moreover, let F = (x1, 22, 73)" be an eigenvector of

(10 —iv3)/4 (—12+i5v3)/8 (12 —1i3v/3)/8
G(1/2,2n/3) = | 3+iv3)/2 (—=1+iV3)/4 (3 +1iV3)/4 (3.226)
-9/2 (9 —i6v3)/4 (=11 +1i2/3)/4
with the eigenvalue —(1 —iv/3)/2, i.e., (i) & # 0 and (ii)
G(1/2,27/3)7 = — [(1 - z\/ﬁ)/z} z (3.227)

By using Eq. (3.226), Eq. (3.227) &

12 —i3v/3 —12+i5V3 o1 +
3+iv3  1—iV3 ( o 3) =0 (3.228)
3 —3+4+1i2V3 2

Because the 3 x 2 coefficient matrix in Eq. (3.228) is formed by two linearly independent 3 x 1 column
matrices, Eq. (3.228) &
221 +23=0 and z2=0 (3.229)

Thus any eigenvector of G(1/2,27/3) associated with the eigenvalue —(1 — i1/3)/2 must be in the form

cl o (3.230)
—2

where ¢ is a complex number # 0. In other words, there is one and only one linearly independent eigenvector
of G(1/2,2m/3) associated with the eigenvalue —(1 — iv/3)/2. Because m = 2 for this eigenvalue, Theorem
7 implies that G(1/2,27/3) is defective.

For each of the matrices G(1/2,—27/3), G(—1/2,27/3), and G(—1/2,—27/3), its defectiveness can be
proved by using (i) defectiveness of G(1/2,27/3), (ii) Egs. (3.4) and (3.5), and (iii) Theorem 8. Also the
fact that each has an eigenvalue with m = 2 and another eigenvalue with m = 1 can be proved by using
Egs. (3.62) and (3.63) directly, or by using Eq. (3.14) along with the proved similar property of G(1/2,27/3).
QED.

Next, an immediate result of Theorem 7 and part (i) of Corollary to Proposition 3 is Lemma 7:

Lemma 7. For a given 6§ with 0 < |§] < 7, G(v, ) is nondefective if (a) 0 < |v| < 1/2, and also if (b)
|v| =1/2 and |0] # 27/3.

Moreover, by combining Lemmas 5 and 7, we have Lemma 8:
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Lemma 8. G(v,0) is nondefective if (a) |v| < 1/2 and —7 < 6§ < m, and also if (b) |[v| = 1/2,
—m < 6 <, and |0 # 27/3.

To prove Proposition 4, note that it has been shown earlier that the a(3) scheme is unstable if |v| > 1/2.
On the other hand, by using Proposition 1(a) and Definition 3, one has

10 (G(1,0)) | = |o1(1,0)] = |o2(v,0)] = |o3(1,0)| =1, —m<O<m if |v]<1/2 (3.231)

In turn, with the aid of Eq. (3.231) and part (a) of Lemma 8, Lemma 4 implies that the a(3) scheme is
neutrally stable if |v| < 1/2. Thus, to complete the proof, one needs only to prove that the a(3) scheme is
linearly unstable if |v| = 1/2.

By using Proposition 1(a), part (b) of Lemma 8, and Theorem 9, one concludes that every element of
[G(v,0)]™ remains bounded as m — +oo for any (v,6) with |v| = 1/2, —7 < § < 7, and |0| # 27/3. Thus,
Definition 1 implies that the a(3) scheme is unstable at v = £1/2 if and only if at least one element of
[G(£1/2,0)]™ becomes unbounded as m — +o0o when 6 = 27/3 or § = —27/3.

Consider any (v, 0) with |v| = 1/2 and |0] = 27 /3. Then, by using Eq. (3.231) and Lemma 6, Theorem
9 implies that at least one element of [G(v,6)]™ becomes unbounded as m — +00, i.e., we have proved that
the a(3) scheme indeed is unstable if |v| = 1/2. Moreover, according to Lemma 6, G(v, 0) is defective and
has an eigenvalue (denoted by o1 (v, 6)) with multiplicity = 1 and another eigenvalue (denoted by o2(v, 9))
with multiplicity = 2. As such the Jordan canonical form theorem implies that there exists a nonsingular
3 x 3 matrix S such that G(v,0) = SA3S~! where Aj is defined in Eq. (3.205) with

A =01(1,0) and Ay =o02(v,0) (lv] =1/2; |0] = 27/3) (3.232)

Because G(v,0) = SA3S~! implies that [G (v, 0)]™ = S(A3)™S ™!, the behavior of the elements of [G (v, 0)]™
as m — o0 is completely determined by that of (A3)™ as m — +oo. Moreover, because |A1] = |A2] =1
(which follows from Eqgs. (3.231) and (3.232)), Eq. (3.208) implies that the only element of (A3)™ that will
become unbounded as m — +oo is the element m(Ay)™ ! and that the magnitude of this element grows
only linearly with m. As a result of the above considerations, one concludes that any element of [G (v, 0)]™
at most can only grow linearly with m for any case with |v| = 1/2 and |0| = 27 /3. Because of this reason
and the fact that the time evolution of the round-off errors originally introduced during any marching step
is also governed by the a(3) scheme, the round-off errors originally introduced during a single marching step
at most can only grow linearly with the marching-step number if |v| = 1/2. Tt is in this sense that the a(3)
scheme is said to be linearly unstable when |v| =1/2. QED.

Note that the total round-off errors observed at the start of any marching step is the sum of the
“offsprings” of the round-off errors originally introduced during all the previous marching steps. Because
of the intrinsic random nature of round-off-error generation and the accompanied effect of (in-phase and
out-of-phase) interferences, evaluating the sum referred to above is much more complex than evaluating the
offspring of the round-off errors introduced during a single marching step. Nevertheless, because the growth
rate of the magnitude of the term m(\g)™ =1 for the case |A2| = 1 is much lower than the exponential growth
rate of a term associated with a case with p(G(v,0)) > 1, one still can infer that the instability of the a(3)
scheme when |v| = 1/2 is much milder than that for a case with |v| > 1/2. As will be shown in Sec. 4, this
prediction is borne out by numerical results.
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4. Numerical results

To assess the accuracy of the a(3) scheme, consider the model problem with the PDE

ou Ou

—+—=0 4.1
ot + ox (4.1)

and the exact solution

_ def . — 1 2m(z—t) —i2m(z—t)
u=ue(z,t) = sin2m(x —t)] = % 1 —e (4.2)
7
We have

a=L=T=1 (4.3)

where L = wavelength and T = period. Moreover, u.(z,t) is a linear combination of two plane wave solutions
ef+(@=1) and eF- (==t with
ky = £27 (4.4)

Let (i)
of Oue(,t of 0?ue(,t
Uge (T, 1) ef % and  Ugge(z,t) ef % (4.5)
and (ii) the spatial domain of unit length be divided into K uniform intervals. Then, with the aid of Eq. (4.3),
one has

ar=1/K, at=wvazx, and t=mnat (4.6)

where n = number of time steps, and ¢ = total marching time. The computer code solving the model
problem for various values of K and n using the a(3) scheme is listed in Appendix C while that using the
dual a scheme [71] is listed in Appendix D. Because the dual a scheme (which are defined over the set Q)
is formed by two completely decoupled a schemes (which are defined over the sets 1 and Qg, respectively),
the accuracy and stability conditions of the dual a scheme are identical to those of the a scheme.

Based on the von Neumann analysis, it was shown in Sec. 3 (Proposition 4) that the a(3) scheme (i) is
stable if and only if |v| < 1/2; (ii) is neutrally stable if |v| < 1/2; and (iii) is linearly unstable if |v| = 1/2. On
the other hand, by using the amplification matrix given in Eq. (3.51) of [71] and a line of arguments similar
to that presented in Sec. 3, one can show that the a scheme (and the dual a scheme) (i) is stable if and only
if |v| < 1; (ii) is neutrally stable if |v| < 1; and (iii) is linearly instable if [v| = 1. These stability conditions
have been verified numerically using the codes implementing the a(3) scheme and the dual a scheme, which
are listed in Appendices C and D, respectively.

In Tables 1-4, the numerical errors of several computations using the a(3) scheme and the dual a scheme
are presented in terms of the following error norms for the non-normalized independent mesh variables:

def 1 K—-1
E(K,TLJ/) = E [’U/?’ _ue(‘rjutn)P (47)
=0
def 1 K—-1
Ey(K,n,v) = 7 2 (ua)f — tae(;, t7)]2 (4.8)
7=0
and
def 1 K-1
By (K, n,v) = Iz [(Uzz)? — Ugge (), 1)) (4.9)
j=0
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Because, at each mesh point (j,n), the only non-normalized independent mesh variables associated with
the dual a scheme are u? and (u.), obviously the error norm E,,(K,n,v) is not applicable to the dual a
scheme.

The numerical errors of several simulations with ¥ = 0.1 and ¢t = 9.876 are given in Table 1. For the
dual a scheme, as the values of K and n become larger, the values of E and FE, are both reduced by a factor
of about 4 as both K and n double their values, i.e., the scheme is 2nd order in accuracy for both u” and

J

(uz)?. On the other hand, for the a(3) scheme, the values of E, E,, and E,, are reduced by the factors

16, 16, and 4, respectively. Thus the a(3) scheme is 4th order in accuracy for both u? and (u.)} while only
2nd order in accuracy for (uz;)7. From the results shown, one can see that the a(3) scheme is much more
accurate than the dual ¢ scheme. As an example, for the case with K = 25 and n = 2469, the value of E
for the dual a scheme is larger than that for the a(3) scheme by a factor of 3450! Because the a scheme is

only 2nd order in accuracy for u7, it is estimated that the accuracy of uj achieved by the a(3) scheme with

K = 25 and n = 2469 is identical to that achieved by the dual a scheme with K = 25 x /3450 ~ 1468 and
n = 2469 x v/3450 ~ 145029.

Here the reader is reminded that, for a reason given in Sec. 2.5, the conclusion reached above about
the orders of accuracy of the a(3) scheme does not contradict that reached in Sec. 2.5 about the orders of
truncation error of the a(3) scheme.

In Table 2, the cases considered have v = 0.1 and ¢t = 10.00 = 107". For these cases where ¢ is an integer
multiple of the period 7', it is seen that the a(3) scheme is 4th order in accuracy for u?, (u;)}, and (uzz)7.

In Table 3, the cases considered have v = 0.5 and t = 49.38, For these cases where the value of v is
right at the stability boundary of the a(3) scheme, aside from round-off errors, the numerical values of (u)”
generated using the a(3) scheme are all identical to their exact solution values, respectively, if n are even
integers.

In Table 4, the cases considered have v = 0.5 and ¢t = 50.00 = 507, i.e., the value of v is right at the
stability boundary of the a(3) scheme and ¢ is an integer multiple of T'. It is seen that the numerical values
of u?, (uz)?, and (ug.)} generated using the a(3) scheme, aside from round-off errors, are all identical to
their exact solution values, respectively. Note that: (i) n and At are chosen according to Eq. (3.67) and n is
even for each of these cases, and (ii) the exact solution are a linear combination of two plane wave solutions
with 0| = |krax| = | £ 2n/K]| < 2n/3, K = 25,50, 100,200 (see Eq. (4.4)), i.e., 6 observes the condition
Eq. (3.64). Thus the numerical results of the a(3) scheme shown in Table 4 confirm an accuracy prediction
made in Sec. 3.4.

Moreover, the round-off errors associated with the a(3) scheme shown in Table 4 also confirm a prediction
made at the end of Sec. 3.9, i.e., the a(3) scheme is only mildly unstable when |v| = 1/2.

According to the von Neumann analysis, (i) the dual a scheme has no dissipative errors (i.e., the
magnitudes of all its amplification factors = 1 for all § in the domain —7 < 6 < 7) if |v| < 1; and (ii) the
a(3) scheme has no dissipative errors if |v| < 1/2. Thus, for a simulation with periodic boundary condition,
aside from round-off errors, the numerical errors generated using the dual a scheme are contributed solely
by the phase (dispersive) errors if |v| < 1. On the other hand, those generated by using the a(3) scheme are
contributed solely by the phase errors if || < 1/2. Thus the relative accuracy of the a scheme and the a(3)
scheme can also be evaluated by comparing their phase errors.

For both the a(3) scheme and the dual a scheme, the phase error of the principal amplification factor
associated with any (v,0) can be measured by

def B(v,0)

E,(v,0) =1— e(1,0) #£0 4.10
(v.0) 1 - 2 (6:(v,6) #0) (410)

Here: (i) ¢e(v,0) is the phase angle of the exact amplification factor, i.e.,
de(v,0) = —1v0 (4.11)

and (ii) ¢(v, 0) is the phase angle of the principal amplification factor. Note that, by using Eq. (3.14) and
similar relations for the dual a scheme, one concludes that

qS(—l/, 9) = ¢(V7 _9) = _¢(V7 9) = _¢(_V7 _9) (4‘12)
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An immediate result of Eqgs. (4.10)—(4.12) is
E,(v,0) = E,(—v,0) = E,(v,—0) = E,(—v, —0) (4.13)

Thus only the values of E,(v,6) with nonnegative v and nonnegative 6 need to be evaluated numerically.
In the code listed in Appendix E, for the dual a scheme, ¢(v,0) is evaluated using the exact formula:

—vsiné
V1—12sin%0

(see Eq. (3.31) in [71]). On the other hand, for the a(3) scheme, ¢(v, 0) is evaluated in the same code using
the Newton’s iterative procedure Eq. (3.113) and the assumption

d(v,0) = tan™* ( ) , V<1l —r<0<7 (the dual a scheme) (4.14)

¢0 = (be(yv 9) (415)

After k iterations, ¢* is taken as the converged value of ¢(v,0) if

(@F /") —1] < (4.16)

where € > 0 is a very small preset value. Note that the iterative procedure generally converges rapidly.
Specifically, Eq. (4.16) with e = 107 is satisfied after at most 5 iterations for all (v,6), |v| < 1/2 and
—m < § < 7. Moreover, as expected, convergence is reached after one iteration for all 6 if |v| = 1/2.

The numerical values of E,(v, 0) for the cases v = 0.001,0.01, 0.1, 0.5 are plotted against 6 (denoted by
Z) in Fig. 3 for both the dual a scheme and the a(3) scheme. The values of E, (v, 0) for the dual a scheme are
calibrated using the left-ordinate scale while those for the a(3) scheme are calibrated using the right-ordinate
scale. It can be seen that the values of E,(v,8) for the a(3) scheme are uniformly much smaller than those
for the dual a scheme. In fact, the numerical results indicate that, for the a(3) scheme, (i) ¢(v,6) = O [(6)*]
if |[v] < 1/2; and (ii) aside from round-off errors, ¢(v,0) = 0 for all 0, if |v| = 1/2 (which is expected from
Egs. (3.62) and (3.63)—see a discussion given following Eq. (3.64)). On the other hand, for the dual a
scheme, ¢(v,0) = O [(0)?] if |v| < 1.
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5. Conclusions and discussions

A thorough and rigorous discussion of the a(3) scheme, a new high order neutrally stable CESE solver
of Eq. (1.1) has been presented. As in the case of other similar CESE neutrally stable solvers [1,5,11,72],
the a(3) scheme enforces conservation laws locally and globally, and it has the basic, forward marching,
and backward marching forms. These forms are equivalent and satisfy the PT invariant property defined in
Sec. 2.

Based on the concept of PT invariance, the algebraic relations Eqgs. (2.114)—(2.118) are derived in Sec. 2.
As it turns out, in the von Neumann analysis presented in Sec. 3, these relations can be used to prove that
the a(3) scheme is neutrally stable when it is stable. Another set of algebraic relations Eq. (2.119) which
results from other invariant property are also discussed in Sec. 2.

In addition to establishing the neutral stability of a(3) scheme, in Sec. 3, it is also proved rigorously
that all three amplification factors of the a(3) scheme are of unit magnitude for all phase angles 6 if and
only if |v| < 1/2 (Proposition 1). Moreover, it is proved that the a(3) scheme is (i) stable if and only if
|v] < 1/2; and (ii) linear unstable if |v| = 1/2 (Proposition 4). These theoretical results have been confirmed
by numerical experiments.

It is shown in Sec. 4 that the a(3) scheme generally is (i) 4th-order accurate for the mesh variables
u? and (u,)?; and (ii) 2nd-order accurate for (us.)}. However, in some exceptional cases, the scheme can
achieve perfect accuracy aside from round-off errors. Moreover, it is shown that the phase errors of the
principal amplification factor of the a(3) scheme are O(6*) if |v| < 1/2, a sharp reduction from those of the
dual a scheme which are O(6?) if |v| < 1.
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Appendix A. Proof for Theorems 1 and 2

First we prove Theorem 1. According to Eq. (8.20) on p.265 of [75], the fact that Ay, £ = 1,2,..., N
are the eigenvalues of the N x N matrix A <

det(A—A) = (A1 = A)Aa—=N)---(Av = N) (A1)
where X is any complex variable and I is the N x N identity matrix. Let A = 0. Eq. (A.1) implies that
det(A) = )\1)\2 T )\N (AQ)

By definition, A is nonsingular < det(A) # 0. Thus part (i) follows from Eq. (A.2).
According to Eq. (A.1), to prove part (ii) we need only to show that

det (A™" = \I) = (%1 — A) (%2 — /\) (% — /\) (A.3)

for any complex variable A. Because det(BC') = det(B) det(C) for any two N x N matrices B and C, we
have det(A)det (A™') =det (AA™!) =det(I) =1, i.e., det(A~") = 1/det(A). Thus Eq. (A.2) implies that

1

det (A™!) = ———— AA4
et (A7) Mo Ay (4.4)
By comparing Eqgs. (A.3) and (A.4), one concludes that Eq. (A.3) is valid if A = 0.
Let A # 0. Then
A=A =-a1A7! <A - %1) (A.5)
Thus )
det (A™" — A1) = det(—AI)det (A7) det (A - XI> (A.6)

With the aid of (i) Eqs. (A.1) and (A.4) and (ii) the fact that det(—\I) = (=\)", Eq. (A.6) implies that

det(A_l—/\I)z%()\l_i) ()\2_%)'“()\]\7_%):

-\ 1\ (=) 1 -\ 1 1 1 1 (4.7
()03 () (e 3) = () (v =5) - (=) (-2~ ()
i.e.,, Eq. (A.3) is also valid if A # 0. Thus part (ii) of Theorem 1 has been proved. QED.
According to Eq. (A.1), to prove Theorem 2, we need only to show that
det(A = A1) = (A1 = )2 = A) - Ay = X) (A.8)
Because det(M) = det(M), by using Eq. (A.1), we have
det(A — M) = det(A — )\I) = det(A — \I) o)

=M =N =X Ar =2 = =)A= ) Ay = N)

i.e.,, Eq. (A.8) has been proved. QED.
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Appendix B. Proof for Egs. (3.138), (3.139), (3.155), (3.169), and (3.170)

Proof for Eq. (3.138). Assuming Eq. (3.134) and using elementary trigonometry, we have

cos ¢1 4 cos ¢ — cos(p1 + ) =1 _ 2 cos(2:592) cos(£1522) — 2 cos?(L1522)
singy +sin gy +sin(d1 +d2)  2sin( ¢1J2r¢2 ) cos(‘lblg‘lb2 )+2 8111(‘;5“5‘/)2 ) cos( ¢1J2r¢2 )

o sin( 1 -5052 ) [COS(¢1;¢2) + COS(¢1 -5(252 )}

cos(£592) [cos(£5%2) — cos(£522)| _Cot<¢>1+¢2) 2sin(¢1/2) sin(¢/2)
2 2 cos(¢1/2) cos(¢2/2)

= co (¢1 ¢2> tan(¢1/2) tan(@2/2) = tan(61/2) tan(¢»/2) tan (ig - ¢2>

Eq. (3.138) follows from Eq. (B.1) and Eq. (3.130). QED.
Proof for Eq. (3.139). Assuming Eq. (3.134) and using elementary trigonometry, we have

cos 1 + cosda — cos(d1 + d2) +3 _ 2cos(¢1§¢2)cos(¢1;¢2) + 2 cos? (¢1+¢2) + 4sin (¢1+¢2)
sin gy +singg + sin(¢y + ¢2) 2 sin(¢1'5¢2 ) COS(¢1;¢2) + 2sin( ¢1J2r¢2 ) COS(¢1§¢2)

_ cos(‘bl;‘i’z){cos(‘bl;d’z) +cos(%)} + QSinz(W) . <¢1 4 ¢2> Sin(¢l‘5¢2)
sin( ¢1-§¢2 ) {COS(%;@) + Cos(dh-;d?z )} 2 cos(¢1/2) cos(¢pa/2)

_ T g1+ @2 sin(¢1/2) cos(pa/2) + cos(¢p1/2) sin(go/2)
= tan (ii i ) + cos(¢1/2) cos(¢2/2)

. (ig _ #) 1 tan(er/2) + tan(2/2)

Eq. (3.139) follows from Eq. (B.2) and Eq. (3.130). QED
Proof for Eq. (3.155). Using elementary trigonometry, we have

sin g1 + sin g + sin(p; + ¢2) = 28111(801 i <p2)cos(sa1 ; <P2) + QSin(SO1 i <p2)cos(sa1 ; <P2)
= 2sin(#) cos(('o1 ; S92) + cos( L ;— 72 )} = 4sin(%) cos(p1/2) cos(p2/2)

Next, by using Eq. (3.153), we have

sin(‘pl + <P2) ( ©3

:I:E - 7) = + cos(¢3/2)

Eq. (3.155) is a direct result of Egs. (B.3) and (B.4). QED.
Proof for Eq. (3.169). Using elementary trigonometry, we have (i)

tan(8/4) — cot(6/4) = tan(6/4) — tan(le e —2[1%;2?9/(3)/ Dl _ _tan(29 e O<bl<r
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and (ii)

—tan(0/2) — m =tan(6/2) — W = tan(6/2)
2 4
= tan(6/2) - sme) 02 - 5

Eq. (3.169) is a result of Egs. (B.5) and (B.6). QED.
Proof for Eq. (3.170). Using elementary trigonometry, we have

1 —tan?(6/4)

tan(6/2)[cot(0/4) — tan(6/4)] = tan(0/2) tan(0/4)

= tan(6/2)

i.e., Eq. (3.170) has been proved. QED.
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tan(6/2)

2
L ———1

tan(0/2)

0<0 <m

0<0 <m
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Appendix C. Code "a3.for"

impligit real*8{a-h,o0-z)

parameter {nxd=20060}

dimension u({nxd), uninxd)}, ux(nxd}, uxn({nxd), uxx(nxd),
*  uxxn (nxd)

Code "a3.for*. This code implements a neutrally stable solver
for a pure advection egquation with a sgine-wave initial data and
periodic¢ boundary condirions. The sine wave 1s of unit wavelength.

Theoretically, the solver is designed to have at least
third-order accuracy. However, it has been shown numerically
that the scheme is of 4th-order accuracy.

Let a, dx, and &t denote the advection speed, the spatial mesh
interval and the time step size, respectively. Let (i) the
Courant number c¢n = ar*de/dx; and (ii) theta denote the phase
angle of a Fourier mode. Then, according to Proposition l{a},
for any pair of c¢n and theta with len} .le. 1/2 and -pi .lt.
theta .le. pi, the three amplification factors of the a3 gcheme
are all of unit magnitude.

It can ke shown analytically the scheme is (i) stable if
len| .1t. 1/2; (ii) linear unstable if |en| = 1/2 ; and
{iii} unstable if |en| .gt. 1/2.

There are three independent mesh variables (the analogues of the
dependent variable and its first and second spatial derivatives)
and three eauations per mesh points. The three eguations are
obtained by imposing (i) two conservation conditions over CE- and
CE+ and (ii) a STI invariant condition that ingures the solver has
third-order truncation errors.

ux, uxx, uxn, and uxxn represent the current and updated numerical
analogues of normalized spatial derivatives during time marching.
However, the output contains the non-normalized values.

it = no. of time steps.

k = mesh intervals per unit length.

cn = Courant number.

a = advection speed.

iop = output selector. Only the global L2 error norms eru2, erux2,
and eruxx2 (which correspond to u, ux, and uxx, respectively)
along with the problem defining parameters will be included in
the output if iop = 0. Otherwise, all local solution and error
values will also be included.

The computational domain ig 0 .le. x .le. 1. In the output, (i)
ue, uxe and uxxe are local exact solution values, (ii) u, ux,
and uxx are local numerical solution values, (iii) eru = u - ue,
erux = ux - uxe, and eruxx = uxx - uxxe, and (iv) eru2, erux2,
and eruxx2 {which are given at the end) are the globkal L2 error
norms for u, ux, and uxx, respectively.

it = 6000

k = 120

cn = 0.5d40

a = 1.d40

iop = 0

dx = 1.40/dfloat (k)
df = cn*dx/a

dxl = éx/2.40

dx2 = dx**2/4.40

t = de*dfloat{it)
ki =k +1

k2 = k + 2

pi = 3.141592653589793240
tp = 2.d0*pi

tps = tp**2
tpat = tp*a*t

pdx = pi*dx
pdxs = pdx**2
cns cn**2

cnp ; 1.80 + ¢n
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cnm = 1.40 - ¢cn

al (1.40 + 2.40%*cns) /3.4d0
a2 2.40*% {cnp + cns)/3.40
a3 2.480* (cnm + cns)/3.40
bp cnp/2.d0

bm cnm/2 .40

cz 2.40*cn

cm 0.540 - ¢n

cp 0.5d0 + ¢cn

{2 { I O | R IS VN O

open {unit=8,file='a3.opt'}
write (8,10)
write (8,15}
write (8,20) it,k,dt
write (8,25) a,cn
write (8,30} t
do 100 3 = 1,k2
tpx = tp*dfloat{j-1)*dx
u(j) = dsin{tpx)
ux{j) = pdx*dcos (tpx)
uxx(j) = ~pdxs*dsin(tpx)
100 continue
do 400 i
do 200 3
s = u{j}
sp = u(i+l) - conp*ux{j+l} + a2*uxx(j+1)}
sm = u{j-1l) + cnm*ux({j-1} + ad*uxx(j-1}
un{j} = 2.d0%*s - bp*sp - bm*sm
uxn{j) = cz¥*s + cm*sp - C¢p*sm
uxxn(j) = 1.5d40*{(sp + sm} - 3.40*s
200 continue
do 300 7 = 2,k1
u(j) = un(j)
ux{j} = uxn(j)
uxx(3) = uwxxxn(3)
300 continue
u(k2) = u{2)
ux{k2) = ux(2)
uxx(k2) = uxx{2}
u(l) = u{kl)
ux(l) = ux{kl)
uxx (1) = uxx({kl)
400 continue :
eruz = 0.40
erux? = 0.d40
eruxx2 = 0.d4C
do 500 § = 1,k
x = dfloat{j-1) *dx
tpx = tp*x
ue = dgin{tpx-tpat)
uxe = tp*dcos({tpx-tpat)
uxxe = -tps*ue
ux{j} = ux(j)/dxl
uxx (3} = uxx{j)/dx2
eru = u{j) - ue

1.,it
2,k1
en*ux{i}) + al*uxx(j)

HIE|

erux = ux{j} - uxe
eruxx = uxx(j) - uxxe
eru2 = erul + eru**2

erux?2 = erux2 + erux**2

EruUxXxXZ = eruxx2 + eruxx*¥2

if {iop.eg.0) goto 500

write (8,35) x

write (8,40) ue,u(j),eru

write {8,45) uxe,ux(j),erux

write (8,50) uxxe,uxx{j),eruxx
500 continue

eru2 = dsgrt{eru2/dfloat(k})}

erux?2 = dsqgrt(erux2/dfloat(k))

eruxx2 = dsgrtl{eruxx2/dfloat (k})

write (8,185)

write {8,55) erul,erux2,eruxx2a

close {unit=8)

10 format (' QUTPUT FOR CODE A3"')

15 fOImat (l **'k***'k******i:********************t******t**i*********l)
20 format (' it =',1i8,' k =',i8,' dt =',gl4.7)

25 format (* a =°,gl4.7,' CFL =°,gl4.7)
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30

40
45
50
55

format (' t =',gl4.7)
format (' x =

format (' ue =',gld.7,xx,'
format (' uxe =',gld.7,x,'
format (' wxe =',gld.7,'!
format (' eru2 =',gld.7,'
stop

end
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u=',glé.7,xx,"'
ux =',gl4.7,x,"'

erux2 =',g14.7,"

1 14.7 l******************************************l)
g 4y

erc =',gld.7)
',g914.7)
uxx =',gld4.7,"' eruxx =',gld.7)

erux =

eruxx?2

59

,gle.7)
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Appendix D. Code "a2.for™

impligit real*8(a-h,0-z)

parameter (nxd=2000)

dimension u{nxd), un(nxd), ux(nxd), uxn{nxd)

Code '‘a2.for''. This code implememts the dual ~"a'' scheme
with a sine-wave initial data and periodic boundary conditions.
The sine-wave is of unit wavelength. It can be shown that

both exact and numerical solutions must be spatially periodic
with unit wavelength too.

ux and uxn represent the numerical analogues of normalized
gpatial derivatives during time marching. However, the output
contains the non-normalized values.

LR R R E R ERSL RS SRR R R SRR AR RS R RS R E AR ER R R R R R EERERS RS ER R R ERESRERES

input:

it = no. of time-marching steps.

k = no. of spatial intervals per unit length.

cn = Courant number.

a = the advection speed.

iop = output selector. Cnly the global L2 error norms eruZ and
and erux2 {which correspond to u, and ux, respectively) along
with the problem defining parameters will be included in
the output if iop = 0. Otherwise, all local exact solution
and numerical solution values {(ue, uxe, u, and ux) along with

the error values {eru and erux) will also be included,.
A X TR A SRR S S EESLEEER RS S SR ER RS R SRS SRR AR AR RN AR R EREEREEEEEEREEEERSRS]

The computational domain is 0 .le. x .le. 1. In the cutput, (i)
ue and uxe are local exact solution values, {(ii) u and ux are
local numerical solution values, (iii) eru = u - ue and

erux = ux - uxe, and (iv) eru2 and erux2 (which are given at the
end) are the global L2 error norms for u and ux, respectively.

it = 20000

k = 200

cn = 0.540

a = 1.40

iop = 0

pi 3.141592653589793240

dx 1.d0/dfloat (k)
dat cn*dx/a

hdx = dx/2.d40

t = dt*dfloat{it)

unn

kl = k + 1

k2 =k + 2

tp = pi*2.d0

tpat = tp*a*t

pdx = pi*dx

cns = (1.40 - cn**2}/2.40
cnp = (1.d0 + cn)/2.40
com o= (1.40 -~ cn)/2.40

open {unit=8,file='a2.opt')
write (8,10}

write (8,15)

write (8,20) it,k,dt
write (8,23) a,cn

write (8,30) ¢

do 100 j = 1,k2

tpx = tp*dfloat (j-1)*dx
u{j) = dsin(tpx)

ux(j) = pdx*dcos (tpx)
continue

do 400 i = 1,it

do 200 j = 2,k1

un(d) = cnm*u(j+l) + cnp*u{ji-1) + cns*{ux(3~1) - ux(j+i))
uxn(j) = {u(j+1l) - u(j-1))/2.40 - cnp*ux{j+1} - crm*ux(j-1)
continue

do 300 j = 2,k1
u{j} = un{j)
ux{3) = uxn(j}
continue
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400

500

u(k2; = u(2)

ux{k2) = ux(2)

u(i) = ulki)

ux (1) = ux(kl)

continue

eru? = 0.40

erux2 = 0.d0

do 500 j = 1,k1

x = dfleat(j-1)*dx

tpx = top*x

ue = dsin{tpx-tpat)

uxe = tp*dcos{tpx-tpat)
ux(j) = ux(j)/hdx

eru = u({j) - ue

erux = ux(j) - uxe
eru2 = eruZ + eru**2
erux? = erux? + erux**2
if {iop.eg.0) gotc 500
write (8,15)

write (8,35) x

write (8,40) ue,u(j),eru

write (8,45) uxe,ux{j),erux

continue

eru? = dagrt(eru2/dfloat (k))
eruxz = dsgrt{erux2/dfloat(k})

write (B8,15)
write (8,50) eru2,erux2
cloge (unit=8)

format (' CUTPUT FOR CCODE A2')

format ('

format ('

format (' a =',gld4.7,' CFL
format (' t =',gl4.7)
format (' x =',gl4.7)
format (' ue =',K6gid.7, xx,’
format (' uxe =',gl4.7,x,'
format (' eru2 =',gld.7,’
stop

end
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********i*********************************************l)

it =',i8," k =',i8,' dt =',gld4.7)

=',gld.7)

u =',gl4.7,%2x,"' eru =',g14.7)
ux =',gi4.7,x,"' erux =',gl4.7)
erux2 =',gid.7}
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Appendix E. Code "fa3.for"
implicit real*8{a-h,o-~2)
Code " “fa3.for'!

Let a, dx, and dt denote the advection speed, the spatial mesh
interval and the time step size, respectively. Let (i) the
Courant number cn = a*dt/dx; and {ii) theta denote the phase
angle of a Fourier mode. Then, according to Proposition 1l(a},
for any pair of cn and theta with |en| .le. 1/2 and -pi .1lt.
theta .le. pi, the three amplification factors of the a3 scheme
are all of unit magnitude,

Assuming that Jecn| .ie. 0.5, this code can be used to evaluate
the dispersive errors of the principal amplification factor
{per dt) of the a3 scheme and compare them with the
corresponding errors of the dual a scheme (see AIAA 2006-4779).

Let lambda = the wavelength of a Fourier mode. Then (i) theta

= 2*pi*dx/lambda; {(ii} the phase angle of the analytical
amplification factor is -cn*theta. Let phi denote the phase
angle of the principal amplification factor of the dual a scheme
or the a3 scheme. Then phi = f{c¢n,theta) with

f{-cn, theta) = fi{cn,~theta) = ~f{cn,theta) (see Eg.(3.14) in
AIAA 2007-4321).

Thus, without any loss of generality, one may assume that

G .le. cn .le. 0.5 and 0 .ie. theta .le. pi in numerical
computations.

nz = number of intervals over the domain ¢ .le. theta .le. pi.
ep = the error bound below which the Newton's iteration is
terminated.

In the output, (i} ¢n is the courant number (ii} z is the wvalue
of theta, {(iii} era is the walue of [l-phi/{~c¢n*theta)] for

the dual a scheme, (iv} era3 is that for the a3 scheme, and

(v) k is number of Newton's interations required for convergence.

The domain of cn is 0 .le. cn .le. 0.5.

cn = 0.00140

nz = 100

ep = 1.4-14

pi = 3.141592653589793240
dz = pi/dflecat(nz)

z = 0.d0

open {(unit=8,file='fa3.opt"')
write (8,10}

write (8,20} c¢n,nz,ep

do 300 1 = 1,nz

z = 2 + dz
a = 2.4d0*en**2*(1.d0 ~ deos{z))
b = cn*dsin(z}

pC = -Ccn*z

era = 1.,d0 - datan(~b/dsqrt(i.40 ~ b**2})/p0

o = p0

k=20

pn = p - {{dsin(p))**2 - a*(1.40 + dcos{p}) - b*dsinip))/
(dsin(2.d40*p) + a*dsin(p) - b*dcos{p}):

k=k+ 1

if {(dabs{pn/p - 1.40).lt.ep} goto 200
p = pn

goto 100

era3 = 1.d0 - pn/p0

write (8,30) z,era,eral,k

continue

close (unit=8)

format (' **x¥¥xkxxwxxr v Gurput for Code fald.for:,! *x*xxxkxxtiws)
format (' cn =',g914.7,' nz =',16,' ep =',gl4.7)

format (' z =',gl4.7,' era =',gld.7,"' erald =',gld.7,' k=',1i6)
stop

end
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TABLE 1.—NUMERICAL RESULTS OF THE a(3) AND DUAL ¢ SCHEMES

v=0.1 1=9.876
K=25n=2469 | K=50,n=4938 | K=100,n=9,876 | K=200,n=19,752
p a(3) 0.131x1073 0.143x107 0.883x10°° 0.549x1077
a 0.452 0.115 0.287x107" 0.716x1072
P a(3) 0.445%x10™" 0.977x107° 0.611x107* 0.382x107°
T a 2.90 0.732 0.182 0.454x10""
E. a(3) 0.225 0.169 0.406x10™" 0.100x10™"
TABLE 2—NUMERICAL RESULTS OF THE a(3) AND DUAL ¢ SCHEMES
v=0.1 £=10.00
K=25n=2500 | K=50,n=>5,000 | K=100,n=10,000 | K=200,n=20,000
e a(3) 0.228x107 0.110x107* 0.628x107° 0.384x107
a 0.469 0.118 0.292x107! 0.727x107
P a(3) 0.154x107" 0.992x107 0.623x10™ 0.390x107°
Y4 2.89 0.728 0.182 0.455x107"
E. a(3) 0.473 0.316x107" 0.199x107 0.124x107°
TABLE 3.—NUMERICAL RESULTS OF THE a(3) AND DUAL ¢ SCHEMES
v=05 1=49.38
K=25n=2469 | K=50,n=4938 | K=100,n=9,876 | K=200,n=19,752
e a(3) 0.168x10°° 0.471x107° 0.294x10°° 0.183x1077
a 1.34 0.429 0.109 0.271x107"
£ a(3) 0.583x107! 0.856x107"2 0.261x107"! 0.678x107!!
a 8.73 2.73 0.686 0.171
E. a(3) 1.01 0.942x107" 0.235x107! 0.587x1072
TABLE 4—NUMERICAL RESULTS OF THE a(3) AND DUAL ¢ SCHEMES
v=0.5 £=50.00
K=25n=2500 | K=50,n=5,000 | K=100,n=10,000 | K=200,n=20,000
E a(3) 0.362x107" 0.140x107"2 0.229x107"2 0.262x107"2
a 1.35 0.440 0.111 0.275x107"
E a(3) 0.162x107'2 0.845x107 12 0.261x107"! 0.682x107!!
a 8.73 2.73 0.689 0.172
E. a(3) 0.172x107° 0.282x10°% 0.185x1077 0.840x1077
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Figure 1.—A surface element on the boundary
S(V) of an arbitrary space-time volume V.
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